Cambot: A Webcam Search Engine

By:

Tanya Peters

Mary Dang

Eric Kochhar

Abstract:
In this paper, we present Cambot, a webcam search engine developed on top of Nutch, an open source search engine. Cambot is designed to crawl and index the web for webcam images. The URL for Cambot is located at http://kiska.cs.washington.edu:4528/.

Identifying pages that contain webcams from those that do not is a challenge. We accomplish this task by performing text classification and image classification for each web page after a crawl of the Web is done. Both classification methods use techniques that determine whether or not a web page contains a webcam. If a page passes both classification methods, then it gets stored into the index, allowing it to be searched via the Cambot search pages.
In the development of Cambot, we faced several difficulties and issues, which will be addressed. Finally, in order to demonstrate Cambot’s effectiveness in classifying webcam pages, we performed a quantitative analysis of its overall performance.
Introduction

Cambot is a search engine for internet webcams completed for CSE 454, the Computer Science and Engineering Internet Systems Capstone at the University of Washington. It pulls techniques from standard search engines and machine learning techniques to help filter webcam pages and webcam images. We started with the Nutch open-source web-search software as our framework for crawling and indexing the web. Most of our work was centered on machine learning, framework optimizations, information extraction and storage, and search user interface.
Architecture

Overview

Cambot starts by using Nutch to do a crawl of the web to a specified depth. All of this is cached and stored for the indexer. The indexer iterates through each of these pages and does a number of things. First, it runs each page through a naïve Bayesian text classifier to determine if the page could be a webcam. If it thinks it is not a webcam page, it skips the page and move on. If it believes it is a webcam page, the page is passed to the image classifier. The image classifier then runs through a number of steps to determine if it also believes the page is a webcam, what the webcam image is on the page, a very rough refresh rate, and if the webcam is inside or outside. If, at this point, we still believe the page is a webcam, we analyze the text on the page to see if we can find the location of the webcam.
If a webpage makes it through those three stages, analysis of the page is complete and it is indexed and entered into the database. The indexing is done using the standard Nutch document indexing interface. We add the page to our webcam database using SQL Server 2000 Java interface code to call stored procedures on the database server. Also, when the image classifier believes it has found a webcam picture on a page, it automatically stores the picture onto our server and passes back the location to the indexer. The indexer stores this location along with the page information in the database so that the searcher can display the stored image of each page with the search results.
The Cambot search interface allows for three types of search. The first is the normal keyword search of the text of indexed documents. The second is a latitude and longitude distance search. The user enters a latitude and longitude along with a distance. We then query the database to find all webcams within the given distance and return those results. The final search type is based on city, state, and/or country. This allows the user to enter a variety of locations that we then lookup for latitude and longitude. If we find multiple possible matches (users can choose just to enter city for instance) we display all possible matches and allow the user to choose which to use.
Fetcher
One of the largest problems we had was trying to understand the Nutch internals, specifically how fetching and indexing works. Initially we had felt that we could place most of the classification into the fetcher. After implementing the framework in the fetcher, we realized that we had misunderstood the process Nutch goes through when crawling. Our initial system was built to look at each page as it was fetched and to determine what to output to the rest of the system based on our classification. This caused two problems; first of all, the fetcher requires two full fetches on every crawl. This is creates high overhead because we have to do text classification and image classification twice on each page. More importantly, if we cut a page out at the fetch stage, its links would not be added to the queue and so a depth ten crawl fetched as many pages as a depth one crawl. We tried several quick fixes, like stripping everything but links from pages we did not want to include, but every approach had its own problems.
When we began the project, we were confused about how the ArrayFile.Reader, ArrayFile.Writer, SegmentReader, etc. worked and so we did not fully understand what went into each of the stages after fetching. After realizing that the fetcher approach would not work, we traced the code from the end of fetching to the end of the crawl. This helped us understand how everything worked and helped us realize that classification would be better suited in the indexer (latitude and longitude lookup and Bayesian training were left in the fetcher and will be discussed in later sections).
Indexer

Moving the text and image processing code over to the indexer did not require much work. Most of the classification code in the fetcher had been written in functions and so we were able to cut and paste most of it over to the indexer. This fixed our crawling problems but introduced another issue because, while the fetcher is multi-threaded, the indexer is not. Every time the image classifier thought it had found a webcam image on a page, it would sleep for a minute to see if the image changed to get a rough idea of the refresh rate. A depth three crawl would, on average, do about 1000 of these one minute sleep operations requiring our index time to jump to well over 16 hours!
To fix this, we multi-threaded the indexer based on the fetcher code. It is currently built to run 15 threads though this number is easily modified. On entry, it creates one SegmentReader for the threads to use to access the fetcher data and computes the total number of pages that were fetched. It then creates the 15 threads and passes the SegmentReader and the number of fetched pages to each thread. The threads then each do some initialization routines and then start iterating through all of the documents that were fetched. For each document, each thread does a hash of the domain of the document to see if it is the thread that should run classification and indexing on it. The Horner hash we used ensures that all domains hash to the same thread, thereby preventing us from hitting a domain too often and looking like we are running a denial-of-service attack. The hash also helps spread out the indexing work although more advanced hashes could be used to better balance the number of pages owned by each thread. Once a thread has determined if it its ID is the hash for the current document, it ignores it and moves on if it is not, or begins classification if it is the owner.
When a thread has looked through every fetched page, it signals completion and terminates. When all threads have completed, our thread manager then releases thread resources and returns control to the thread creator. Normal indexing for the pages we have classified as webcams continues from that point on.
Text Classifier
The text classifier we use is a simple Bayesian text classifier. It is the first thing we run on each page and determines if the page will be passed to the image classifier for more analysis. In order to train the classifier, there are two URL files created, one for positive training examples and one for negative training examples. A crawl is then started with special flags to indicate this is a training run and whether it should train the positive or negative examples. It then does a depth zero fetch of all of the pages in the URL list. For each one, it parses the content of the page and removes any characters that are not letters or numbers.
It then creates a new class that will encapsulate all of the training examples called NegativeTrainingExamples or PositiveTrainingExamples in the fetcher directory. These classes contain a string array and have methods to get the number of training examples and to get the content of each training page. This training system allows for us to avoid having to fetch training pages every crawl, is robust against pages going down because we store them, and avoids having to read training strings from a file because they are built into a class built before running a full crawl.
Everything else about the classifier is built from the design given in the course slides on text categorization. We add the log of all the probabilities of each word for the is a cam and is not a cam categories, add the log probability of being in that category based on our number of training examples, and then compare the resulting values to decide which category the test page is in.
Image Classifier
Once the text classifier has run on a page, it passes the page to the image classifier if it believes the page includes a webcam. The image classifier starts its work by looking at the HTML code for the given page. From this, it extracts any images that could possibly be webcam images. Unfortunately, that excludes many webcam pages that use anything other than an image to display the webcam (JavaScript, videos, Shockwave, etc.) because we are unable to get to the webcam image.
Given the set of images within a given page, we start by isolating those that are banners and removing them. We first noticed that for the great majority of banners and advertising, there are large sections of the image that are a single color. Given this, we run what is called a connected regions algorithm on the grayscale version of the image. If we then calculate a region-to-pixel ratio for the given image, banners tend to have values closer to 30%, where actual images (webcam or not), have values closer to 70%, a clear difference. We then throw out any images that appear to be advertising or banners.
From the set of images that are classified as possible webcam images, we then try and determine if the given image is active, as well as if the image is located inside or outside. To determine if it is active, we run a simply poll – we wait sixty seconds, and grab the image again. If the two images are different, we say that the image is actively refreshing at least once a minute and do not try to determine the true refresh rate. If an image does not refresh in a minute, we consider it inactive (which is obviously inaccurate but greatly reduces the time spent polling images). We do this for up to three ‘non-banner’ images in any given page (or stop if we find one that is active), to limit the number of time spent on each of these pages. If we find one that is active we save that image to our server or, if no active pictures are found, we save the first image on the page.
To determine if the given image is located inside or outside, we covert the image from the standard RGB color space to both HSV and YIQ. Outside images are more likely to be washed-out and brighter in general, so we use the saturation (S in HSV) as well as luminance (Y in YIQ) to take advantage of these traits. To train the classification of outside and inside image, we train based on 48 inside pictures and 74 outside pictures. Finally, we use a test page’s distance from each of these groups to determine which group the page belongs to.
Text Location Classifier
If the text classifier and image classifier both agree that a page has a webcam, we send it to the final stage of analysis. In this stage, we use a small list of locations with latitude and longitude from the web (approximately 1,000 locations from http://www.bcca.org/misc/qiblih/latlong.html), most of which are in the United States and Canada, but also with a good sampling from around the world. From this, we search through each webcam page for instances of the cities in this list – if the city was found, we validate the match by also requiring that either the state, province (where available), or country is also located in the page. If none of those are found, we also do a search to see if just the state/province or country name is found in the text. If find multiple matches from our location list, we take an average of the latitude and longitudes to get a rough estimate of the location of the webcam.

Database
After we have identified a webcam page and retrieved all of the information on it (url, latitude and longitude from city list, active or inactive, inside or outside, refresh rate, and saved image name), we save all of this information to our SQL database. This database is then used by the searcher to find results and to lookup the location of our stored images. The decision to use a database was made knowing that it would not scale to a production-level product. But, because of the time we were putting into image classification, multi-threading, and our other focus areas, we were willing to use a database so that we could have more time to work on other areas.
Domain Location Lookup
After a crawl has finished, we store out a list of the sites added to our database. We then have another type of crawl which uses the ObjectsSearch page (http://www.objectssearch.com) to lookup the latitude and longitude of each domain name. Once it has fetched the page from ObjectsSearch (e.g. http://www.objectssearch.com/location.jsp?url=http://www.amazon.com), we add that information to the database (in addition to the location information from parsing the text of the page).
Front-End

Once crawling and location lookup is complete, the front-end takes over for searching. The first step to setting up the front-end was to set up the Tomcat server and get the default HTML and Java Server Pages (JSP) up and running. After the initial crawl and test of the front end, we got a feel for how the JSP pages worked so that we could modify them.

We then extended the default keyword search to a total of three search methods: keyword search, coordinate search, and general location search. In addition to returning the location and webcam information like that of the keyword search, the coordinate and location search also return the distance of each webcam from the user input. This distance is computed within a stored procedure on our SQL Server database. In the case of the general location search, to allow users to search with as many fields as they desired, a second step was added, which would require users to select a location match based on their input. To accomplish this, a new table in the database was created to hold city, state/province, country, and coordinate information. This data was pulled from http://www.bcca.org/misc/qiblih/latlong.html, the same list used in the Text Location Classifier.
Mistakes and What We Learned
There were quite a few mistakes made on this project, most of which came from not enough research and planning. For instance, since we were pretty confused initially looking at the Nutch code, we decided to start with the fetcher code to see how the system would respond. By the time we realized the move to the indexer needed to be made, it was late in the quarter and the move was a frenzied attempt to get things working. This is a pretty indicative example of how most of the quarter went. We also had planned to use domain names to get a base latitude and longitude estimate and then move to a Hidden Markov Model or a less advanced parsing mechanism and Geocoder. But, it turned out that converting from domain name to latitude and longitude was quite difficult and ended up wasting a lot of time. The other issue was that our Bayesian classifier did not perform as well as we had hoped for. We implemented the simple naïve Bayes text classifier in the course slides, but found out from other groups that there were more advanced versions that worked a lot better (the analysis of the performance of our text and image classifiers are discussed in the next section).
All of these issues could have been solved with more planning and initial effort. From the beginning, the code we wrote was tied directly into the Nutch crawl; had we used plug-ins that allowed us to continuously fetch and classify our data separately from one and another, we could have done deeper crawls because it would have not been a one-shot procedure. Our decision to use a database was made because we did not have enough time to figure out and implement latitude and longitude storing and searching using Lucene. Had we spent more time analyzing Nutch and Lucene and learning what options were available to us, we would have had a much more productive quarter.
Future work would include creating plug-ins to perform our classification and to support concurrent fetching and indexing (using the same multi-threading approach we used in the indexer), implementing webpage location storing in Lucene to remove the database and make our project scalable, doing more work on extracting the webcam location from the text of a page, and working heavily to improve the classifier and reverse the order of image and text classification. These changes would not require more than several weeks considering our current understanding of Nutch but would lead to a huge improvement in our scalability, performance, and usability.
Classification Analysis
We have limited data on our classification, but are still able to draw some strong conclusions about what went wrong and what we could have done to improve it. The chart below shows precision and recall data for our classifiers. To get our data, we took a random sampling of 100 pages from our log and grouped them into five categories: overall (100 pages), English (62 pages), non-English (38 pages), text (100 pages), and image (30 pages). The text group was made up of all pages because the text classifier is run on every fetched page, and the image group was made up of the 30 pages which the text classifier thought were cams and passed to the image classifier for further analysis.
Our recall was 31% or less for all groups! Part of the reason for this was that as we did deeper crawls (and before we trained on non-English pages), we noticed that pages not written in English were being classified incorrectly. So, we added some non-English pages to our classifier. We realized after doing this that we had actually decreased the classification performance. This was because of three factors: first, we were not training enough on each language, second, we were well trained for the non-English pages we saw, and third, because there was no correlation between cam pages in English and cam pages in foreign languages, we were actually increasing the number of underlying groups and thereby decreasing the performance of our classification.
[image: image1.emf]Precision & Recall

0.428571429

0.5

0.416666667

0.266666667

0.428571429

0.075

0.018867925

0.185185185

0.117647059

0.315789474

0

0.1

0.2

0.3

0.4

0.5

0.6

Overall

English

Non-English

Text Image

Precision

Recall

It is important to note that the precision and recall of text were much less than that of images. Only 26% of pages passed to the image classifier were actually cams and yet, out of that group, the percentage of pages the image classifier thought were webcams was correct over 42% of the time while it correctly identified a little less than a third of the webcams it analyzed. This is not conclusive, because the performance of the image classifier on the pages passed to it from the text classifier may not be representative, but these results seem to strongly indicate that the image classifier performs much better than the text classifier. The image classifier’s recall may be partially boosted because if it polls an image, and the image changes, it can be pretty sure the image is a webcam. If we had time to re-index with the image classifier running on each page, we would have the image classifier only pass pages to the text classifier it thought were webcams. We could then compare the precision and recall performance of that order with that of the chart above.
Overall, all groups were classified poorly, making classification the weakest part of our project. Had we had more time to run more tests (if our long fetching runs had not crashed because of out of disk space errors and set us back a day) we may had been able to configure our classification differently and greatly improve the performance of our classification. Although our sample size was low considering the total number of pages fetched was over 40,000, it is clear that any attempts to prove our webcam searcher would have to first focus on improving our classification.
Conclusion

Although we need to improve the performance of our classification and our ability to localize webcam pages, we have most of the infrastructure we need to build an “alpha” version of our webcam search. The only infrastructure change required would be to switch from a database to storing information in our index. With these changes made, we would have a robust crawl solution that utilizes the multi-threading we implemented to efficiently run classification and polling. Although the project was not as successful as we would have hoped, we feel that we finally have an understanding of the internals of Nutch and web crawlers. Given more time we are completely confident we could implement a robust and efficient webcam search engine using what we have learned this quarter.
Appendix

Attribution
Mary Dang – Search, User Interface Front-End, Precision and Recall Data
Tanya Peters – Image Classifier, Database Stored Procedures, Text Location Classifier
Eric Kochhar – Fetcher, Indexer, Database, naïve Bayes Classifier, Domain Location Lookup
Other Code
Our project relied on the Nutch open-source web-search software (http://www.nutch.org), which in turn relies on the Apache Lucene text search engine (http://lucene.apache.org). Our image classifier used the Java Imaging Utilities (http://jiu.sourceforge.net/) to store and extract information from images.
