CSE 454: Advanced Internet Systems

Final Report

Authors:
Jim Li

Jack Hebert

 Kiarash Ghadianipour
Abstract
In this paper we present Camoogle++, a location based webcam search engine. Camoogle is designed to allow a user to search for webcams based on their location and provide the user graphical search results in the style of Google Image Search. Camoogle accomplishes this through the use of a distributed and highly parallelizable system that could easily be scaled to crawl much larger areas of the internet.
What follows is a high level description of the Camoogle’s architecture, the algorithms used to label webcams and localize them, and an analysis of the precision of the localization algorithm. The analysis finds that our algorithm achieves acceptable results for a hand-coded algorithm, with the results strongly relying on the available database of location information.
It is proposed that the next step to improve Camoogle would be to incorporate machine learning based algorithms to help filter out images from being incorrectly labeled as webcams and to localize the true webcams.
Introduction
Camoogle++ is a location based webcam search engine. Much like the Google’s Image search, our Camoogle++ search engine provides a recently updated snapshot of the webcam image upon querying. Some interesting features include the ability for the user to search via a map interface and an extensive archived history of the webcam. Our goal for this project is to emulate Google’s image search on webcam images. As an effect, no java scripted or java applet webcams were included in our search results.
In this paper, we will be discussing in depth the following points:

· The high level architecture of our engine, and interaction between modules.

· Overall system evaluation on things to improve on

· Quantitative analysis of precision on localization of the image search.

Architecture of Camoogle++
The basic overview of our webcam search engine is composed of extracting possible webcam web pages through a seeded web crawler. These crawled links are fed into a processor to determine if the webpage is a valid webcam. These results are then put into an indexer where the contents of the pages can be searched through a front end interface. Figure 1 shows a basic outline of Camoogle++’s main components.
[image: image1.jpg]Heritrix Web | Heritrix Web| Heritrix Web
Crawler Crawler Crawler

S N b

Google URL Control
Search %

Image Image Image
Processor | Processor | Processor

Camoogle™

Archticture

Location Google
Processor) Map Locator’
N2 S N b

Lucene 9 Tomcat Jsp
Indexer Web Server

S 2

Thumbnail Web Jsp
.. Generator) Front End

L

N Y
&

Animated Gif
9 . Generator)

Image
Archived
History

Figure 1. Camoogle++’s Main Modules

Major Components:

Google Search: Used to retrieve URL seeds for crawling.
URL Control server: Communicates with crawlers and image processor clients, manages the URL links.

Heritrix Web Crawler: Crawls the web for possible webcam pages.

Image Processor: Processes the web images for webcam verification.

Lucene Indexer: Indexes the webcam pages returned from Image Processor.

Location Processor: Uses webpage data to determine the location of the cam.

Tomcat Web server: Hosts the web pages and front end modules.

Web JSP front end: Searches the indexed contents.

Web crawling and seeding

We are using Google’s web search API to generate a list of URL seeds to start out the crawl. The lists of URL seeds are sent to the URL control server where they are distributed to the web crawler clients.

Unlike most other groups, we did not use Nutch as the default web crawler. Instead, we used an open source crawler called Heritrix. The reason was simplicity. Since we only needed the URL links as a result of the crawl, Heritrix was much easier to run and to manage. For our crawl, we used about 3 or 4 Heritrix crawler clients in parallel. Our heuristic for a possible webcam page requires the webpage to contain the word “cam” in the text, and has at least one jpeg image. This heuristic is a bit broad, thus the crawled pages were not stored, and the links were sent back to the URL control server for further processing.

Image Processing

Instead of using a machine learning system to classify webcams, we went with an image processing approach. The idea behind the image processing is to classify the image as webcam by analyzing its pixel data and its aspect ratios. By downloading the image at different timed intervals and comparing the differences between the two images, we are able to determine the amount of change of a given image. A system was put in place to filter out images if their pixel data changed too much in hopes of filtering out advertisements, but instead a simpler system involving aspect ratios appears to completely solve this problem (explained below), so it was never actually implemented.
A very important heuristic used in image processing is the aspect ratio. There are thousands of advertisements with images that update, however they are normally in the form of banner ads which have quite different aspect ratios than webcams. By using a ratio filter, we can eliminate most non-webcam images during the image processing. The max aspect ratio value used was 2.5 and no advertisements were found to be labeled as webcams.
The image processors are able to run in parallel on multiple computers. The URL control server sends each processor a list of URLs to process. The images were compared with updated versions at 2 minutes, 10 minutes, then again at half hour. By using a pipelined system, we were able to process about 1,000 web pages per hour per machine. The status of each image on the webpage was sent back to the URL control server to form lists of pages marked as being webcams. The list of webcams is passed to the Thumbnail generator where it archives a set of Thumbnail images every two hours. The list is also passed onto the Lucene indexer where the webcams are indexed. The stored information is then used by location processor to determine the estimated location.
Location Processing

During the indexing process an attempt is made to localize each webcam. The indexer parses the html of the webcam page around the link to the webcam, the URL of the webcam page and the URL of the image. We assembled a large body of location data by crawling http://www.fallingrain.com/world which formed an index of 700,000 cities across North America and Europe, with location and population information. Using city and country names parsed from the page, as well as the country codes from the URLs it becomes possible to form hypotheses about where the webcam is located.
Each city name that is found to be present in the html or URL associated with the webcam is given a weight. The weight is determined by the location of the city name in the html or URL; an extremely high weight is given if the city name is in the URL or the title of the webpage. Otherwise a weight is assigned by the distance from the link to the webcam to the city name. Originally a simple metric of how many characters lay in between the two was used, but gave poor results. Many pages in our crawl linked to tens of webcams and the algorithm would become confused.

A revised metric was implemented that tried to better match the distances that are perceived from viewing the rendered html. Initially the distance between the link to the webcam and the city name are assigned as in the original algorithm. The algorithm then looks for any of a subset of html tokens between the two that greatly affect how the html is visually rendered. The tokens used are {<td>,<tr>,<table>,<div>,<p>,
} as well as their corresponding closing tokens. Very large amounts are added to the distance metric for each instance of any of the previous tokens. Larger amounts being assigned for tokens have a greater affect on the rendered html: for example an instance of <td> is weighted less heavily than an instance of <table>.

After all cities have been assigned weights, a region is assigned to the webcam page. The region is determined by summing the weights of all the cities that reside in a general region and choosing the region with the highest weight. This is made somewhat difficult by many cities sharing the same name, so the weights of the cities are weighted proportionally to the population of the specific city in that region. This allows for Paris, France to be weight more highly than Paris, Texas.
The final city name that is selected for the webcam is the city of highest weight that resides in the region selected. In some cases this set is empty and only a region has been determined. It is also of note that we disallow the algorithm to localize itself to solely ‘United States’, and instead make it localize to individual states.
Thumbnail Generator and Image Lookup System
About thirteen thousand webcams have been identified. When a set of all the images is generated by the thumbnail generator, thirteen thousand new images are created for that snapshot of history. Since we are archiving a set of thumbnails every two hours, the numbers of files needed increases very quickly. To avoid the problem of having too many files on a UNIX file system, we implemented the Image Lookup System. Every two hours, a custom utility program was used to compress all the current thumbnail images into one Thumbnail Image (TNI) file and archive the file in a reachable location. A corresponding summary file is used to keep the location of the image in the compressed file. By looking up the summary file, we can easily extract the needed thumbnail when the user requests to view it. For simplicity and speed we keep an un-archived copy of the latest image from each webcam.
Web Front End

Since all the modules we built are coded in Java, it was logical to create a Java enabled front end. We used Jakarta Tomcat to develop and run the active JSP web pages. Two noticeable features on the front end are the compiled GIF generator, and the map search. The GIF module uses the archived Thumbnail images and generates an animated gif image of the webcams gathered history. The map search allows user to search by location on the map; it uses the calculated location data to determine where each webcam should be marked on the map. The user simply clicks on a location of the map to find webcams near the selected location.
System Evaluation for Possible Future Improvements
Web Crawling
The open source web crawler Heritix is easy to use, but it is not very fast. We selected Heritrix as our crawler due the simplicity of modifying it to our purpose and in fact, only a few lines of code were necessary for it to log the pages that we would then later inspect for the possibility of being webcams. A few other changes were made to modify its behavior as Heritrix normally archives every object it encounters, and in doing so unfavorably slows its crawl. While Heritrix was easy to modify and use, it is not the fastest web crawler and hence a limitation in the number of pages that we could crawl formed and became the largest detractor from our project.

One suggested improvement would be using a more powerful crawler such as Nutch. It would increase the number of pages we could retrieve in the same amount of time.
Classifying Webcams
The precision of classifying webcam pages was another topic we could improve upon. When processing through webpage containing weather forecasts the images matched our given classification heuristics: they had the proper aspect ratio and refreshed often. Such analysis created false positive results that initially seemed to detract from out project, but in retrospect do create an interesting object in their own right as they now given a visual history of Doppler radar and temperature forecasts.
One possible suggestion to improve the precision includes using a learning algorithm for classifying webcams in conjunction with our image processing technique. Theoretically, this would improve the precision as we take the union of results from the two techniques. It is unclear however what the algorithm would learn off of, image data or surrounding textual data, but hopefully that is a research problem that has been somewhat solved by our classmates this quarter.
Another concern in classifying images comes from managing the positive results in the URL control server. The positive results were only run through the image processor once before passed on to the indexer module. If the webpage only changed once during the processing period due to some superficial change in the html, then it would have lead to a false positive result. Another error was that we kept track of potential webcams on the web pages in a poor manner: we kept track by their order on the page, i.e. ‘the third jpeg on the page is a web cam’. While this is simple and quick, it can lead to false positives when the html is changed, or a jpeg is removed and either the images appears to have changed, or what pointed to a webcam now points to something else.
 An improvement would be loop through the list of webcams periodically and check to see if they are still changing. This would improve the precision of classification, but also leads to a new challenge. Many webcams do not refresh at night-time, or can become inactive for several days. A Bayesian system could keep track of this and in theory could even generate models to predict when the webcam would be active and only then include it in the search results.
Quantitative Analysis
A quantitative analysis was done of the location algorithm to determine which parts of the algorithm had the greatest impact on its performance. Five different variations were tried: best, code, stop, population1, and population2. Best ignores choosing a weighted region for location, and instead merely takes the city with the highest weight. Code ignores any country or state code in the URL when determining the location. Stop does not use the stopword list that was experimentally developed through use of the algorithm that filters out many common words present in html that are actually cities. Population1 builds the city list out of every city in the index (every city in most of Europe, all of US) without a minimum population threshold. Population2 builds the same city list, but instead uses a minimum population threshold of 500,000. These are both in contrast to a standard minimum population threshold of 5,000 used in that standard Camoogle localization algorithm.

The tests were conducted by running each of the algorithms over the same webcam results and comparing the locations determined to a list of hand labeled data. This data set contained 142 different webcams.

[image: image2.emf]0

10

20

30

40

50

60

70

80

90

CamoogleBestCode

Stop

Pop1Pop2

Webcams

Incorrectly

localized

The results for the most current version implemented in Camoogle are shown as well for reference; it misclassifies 36 webcams, for an accuracy of about 75%. Both the best and the code algorithms lose a great deal of accuracy by throwing away a large amount of information. The presence of a state or country code in the URL is often a major clue as to where the webcam is located, and the presence of multiple cities names are often a good clue as to which state the city being referred to is actually in.

The stop run is closer to achieving the same results as the Camoogle run, but for obvious reasons it chooses many cities that to a user are rather unlikely such as “Image, Washington”. The population1 run is also fairly close, but it starts to fail in the same way as the stop run, only it is choosing city names that are not yet in the stopword list. It would be possible to add all of these names to the stopword list, but it is quite likely that the distribution of those city names follows a tail heavy distribution and hence would be ineffectual to label them by hand. Instead it might be better to use a machine learning approach involving a dictionary as most words in the stop list are common nouns.
Population2 actually achieves a better accuracy in this comparison than Camoogle, but it is not the ideal algorithm. By setting a minimum population of 500,000 the algorithm can localize to a city far less often than the standard algorithm, instead merely settling on a region. While in doing so it achieves a much higher accuracy, about 85%, this loss of information is considered to be undesirable. Theoretically a balance between accuracy and information loss could be determined through many iterations of this testing process, but it would be much more interesting to instead develop a stronger system for creating city/region hypotheses for the various webcams. The current system merely weights cities, then weights the regions from the city weights and chooses the best city that lies within the chosen region. While workable this is clearly not the best possible system.

Attribution
Appendix A

Jim’s Attribution:
Of the modules listed on the architecture diagram, I implemented the following:

· Google Search Module for generating the crawl seed

· Image Processor

· Detailed and History results of Web Jsp front end

· Gif Generator imbedded in the Jsp front end

· Thumbnail Generator and Archived Image Lookup System
Of these modules, the implementation of Image Processor was most time consuming. Since image processor is a main module was used to classify webpage to a webcam, a great deal time was spent on the module to ensure the precision. The most challenging tasks were involved of fixing synchronization problems and unexpected timeout deadlocks due to the nature of multithreaded programming. The original implementation processed only about 100 webpage per hour. The final version with four priority queues had about ten times the throughput.

Thumbnail Generator and file system was the next most time consuming module I worked on. The first implement of Thumbnail generator was linearly designed. It took rough about four and half hours to archive the thumbnails. The next implementation, I made it multi-thread program. Of course this introduced more problems into the system due to unhandled critical sections and deadlocks. After fixing most synchronization problems, the efficiency didn’t improve too much over the linear implementation. As a third attempt in optimization, the program was divided into sections run by separate processes. This improved the throughput greatly. I was able to archive all the thumbnail images under an hour.
Hearing how it would be cool to have animated history from a certain progress meeting. I took the challenge and implemented the Gif generator. The code wasn’t too difficult to implement after the right source files were found. Although, the most complex part was to integrate the Gif generator into the front end.

I spent the last week developing the front end our search engine with Jack. It was the first chance I got to work with a JSP page. Writing JSP page was actually quite interesting once I went pass the learning curves.
Jack’s Attribution:

Over the course of the quarter I implemented the following:
· Crawler modifications
· Client/Server system
· Module to index our webcams using Lucene
· Location Algorithm and tests of
· Google Maps Hack (greatly aided by ‘Google Standalone’ code)
· Web server
The crawler itself was simple to modify once the right location in the code base was found. Some more modifications were made to allow multiply instances to run from one installation of Heritrix.

The client/server system was next designed such that we could easily crawl more seeds, log the results and distribute those to the image processor. I designed the architecture and coded this system.

Indexing the webcams was made rather easy through the use of Lucene. Lucene was designed to be use to incorporate into a project and it was. This code was thoroughly integrated into the Location algorithms which while poor software engineering, was also quick to write, and still quite comprehensible due to the perceived simplicity of Lucene.

The location algorithms were the most interesting challenge that I took on this quarter. Using the location data that Kia scraped I was able to identify location names parsed from the html. Determining how to best derive a location hypothesis was challenging, especially when many websites link to several webcams in different cities and countries. I feel that my results are good given a lack of any learning algorithm.

In the last week of the course I became enthralled with the idea of incorporating a Google Maps hack into our project. Information on how to accomplish such is available on the web, but is not completely coherent yet. After many hours I finally got this to work and in the process solved a few bugs, but created a new one. It appears that the current Google Code does not support markers being placed on either side of the zero-degree longitude line. I fixed this, but have introduced a less visible scrolling bug. I consider this to be less annoying than the original version.

While enjoyable, implementing this shows off our collection of webcams to a significantly higher degree than is otherwise possible making our project appear more impressive.

I also admin the web server and wrote the several of the JSP pages based heavily off of the provided code from the Lucene ‘Web Demo’ as well as ‘Google Standalone’.

The camera icon on the maps is also provided by Josh Day, a good friend of mine.
Kiarash’s Attribution:
My main area was information gathering, and Indexing. The following is a more in depth list of my responsibilities.

Week 1 through Week 3:

In depth understanding of the Luence Indexer API, and writing tools that would interface with it for indexing data, and searching.

· Our original intention was to have an indexer that could parse an HTML file just by giving it a URL. After further investigation, and research, we found out that it would be better for us to download the HTML, and then index it.

· As far as searching, we took advantage of the scoring property of Lucene for our ranking purposes.

 Week 4 through Week 6:

Research on public Latitude, and Longitude databases for their completeness and accuracy:

· The first public database that we decided to work with was

 http://www.bcca.org/misc/qiblih/latlong.html.

I wrote a tool for parsing all the data and putting it in a file for indexing, but after running some tests, we realized that the database was not complete enough.

-
Our next step was to look into a freeware called “geocoder”. This software basically takes a street address as an input, and converts it into Latitude and Longitude values. After we analyzed the webcam pages that our crawler had discovered, we realized that there are many pages that don’t have any street address on them. Some of them were just a plain page with a jpeg in it. Even though geocoder had a very large database, but its behavior wasn’t best suitable for our purposes.

-
Finally, we came across fallingrain.com. The database in this website was very complete and very accurate. After crawling a large portion of this website (all cities in US, and Europe), we gathered a list of URLs (each URL was for one city), I wrote an engine that would go through the list of URLs, and download each HTML, parse it, and place the extracted information in a text file. My engine was single threaded, and it would go through the list of URLs linearly. In order to download each page, I had to make a new HTTP connection to the server. Basically my engine had 2 major components. 1. HTML Downloader 2. HTML Parser. In order for me to write and efficient parser, that could easily parse all the pages that were automatically getting downloaded, I had to manually go through several pages on the website, and analyze their common patters.

Week 7 through Week 9:

· Contributed to the web front end UI: Basically within the last 3 weeks of the quarter, we started to work on the front end. I mainly worked on what to show, and how to show the results to the user once the “Search” button has been clicked. I also worked on the linkage between every image to its corresponding history page.
 Other source code used or modified
Appendix B
Google Search API

http://www.google.com/apis/

Heritrix Web Crawler*

http://crawler.archive.org/

Lucene
http://lucene.apache.org/

Google standalone
http://stuff.rancidbacon.com/gmaps-standalone/
Google maps custom icon How-to*

http://www.gnik.com/wiki/GoogleMaps

Google maps JavaScript*
 http://maps.google.com/mapfiles/maps.keyhole.4.js
http://www.dasnet.org/node/101/map_switch.js
Jakarta Tomcat
http://jakarta.apache.org/tomcat/

Gif trial version

http://www.gif4j.com

Jpeg thumbnail image creation*

http://www.geocities.com/marcoschmidt.geo/java-save-jpeg-thumbnail.html

FallingRain Location Index

http://www.fallingrain.com/world/
* - Indicates that modified versions were used, as compared to simply using the API, code, or data provided from the website as of 6/05/05.
_1179478579

