“Every Cam”, Analysis of a Web Camera Search Engine
Gheoca Razvan, Papadopoulos Constantinos, Pop Aurel
(teknolog, papadino, acolinp)@cs.washington.edu
Computer Science Department, University of Washington, Seattle WA 98105

Abstract
Our team created a webcam search engine based on Nutch, the open source Apache Incubator project. Our search engine consists of the following three parts: a crawler, an Indexer and a User Front End. Three ranking algorithms were designed. Their accuracy was measured and comparisons were made. The following fields were indexed: street address, server country, refresh rate, image URL and availability. The existing Nutch front end was modified by adding a web camera image to our hits as well as a few other details. We also created an advanced search form that queried over all the fields that were of interest to the user. An experiment to determine the efficiency of our classifiers using a sample of 210 URLs was performed. Our best ranker recorded a success rate of 87%. Finally, analysis of indexed field correctness was provided along with the conclusions to our experiments. Recommendations for future work involving streams and artificial intelligence were given.
Keywords: web camera, search engine, image indexer, rank classifier, Nutch and Lucene plugins.
Introduction
Web cameras are used extensively in our society and they can be found almost anywhere. A user would like to be able to search the web for a particular webcam by specific characteristics. However, this particular demand is not well addressed by curent web camera indexes. Our projects goal was to address these issues by providing a compelling replacement for existing web camera indexes.

In this paper, we describe the steps taken during the design process of EveryCam. We provide a summary of the architecture, as well as a brief description of the difficulties encountered. Aspects of the architecture such as the crawler, indexer, visual front-end and our modules are explained in more detail. The techniques used for information extraction are also described. These include address, server location, day-time, fetch date, availability, refresh rate and camera image. Finally, an assessment of the success of our classifying and indexing techniques is provided.
Discussion
In this section, we will go over our accomplishments through the project. We will start with a statement of the problem tackled. We will then go over the architecture of our search engine and describe some of the lessons learned. We will finish with a quantitative analysis of our results.
Statement of the problem
In this project we tried do something that, to our knowledge, was not yet attempted. We tried to develop a webcam search engine. our search engine focused on allowing the user to search for webcams at different addresses around the world for their refresh rate, availability, day/night, address, and server country.
Architecture

Our webcam search engine has three main components:
1. The crawler

2. The indexer

3. The user front end

1. Crawler
The crawler component of our project is based on the Nutch open source search engine. We basically used a copy of the Nutch fetcher to crawl the web and retrieve web pages based on a starting seed list that encompassed a few hundred carefully selected webcam index web pages.
2. Indexer
For this part, we used the indexer provided by Nutch, because it gave the advantages of Lucene Fields and Nutch database segments. To this, we added three ranking algorithms and indexed additional fields.
Ranking Algorithms

The three ranking algorithms we added are the following:

· Simple Ranking Classifier

· Image Ranker

· Combined Classifier
The Ranking Classifier ranks web pages based on html tag parsing. It searches for keywords that are common in webcam pages and has a personal exclusion list. It looks for tags that resemble webcam information. For each of them, it computes a score based on the significance of the tag. It decides that the item is a web camera based on a score greater or equal to 10.
The score computation is quite clever. However, it must be updated regularly due to changes web camera visualization techniques. First, it uses a good keyword list and a bad keyword list. When keywords are found in any of the particular tags, points are added or deducted. We go over the title and keyword tags because these are given a lot of importance in the ranking. We will give many points if correct keywords are found. However, if incorrect keywords are found, the results are automatically excluded. This works particularly well for excluding web camera indexes. Advanced streams and applets are also searched for traces of web camera keywords and images. Noticeably, flash, windows media player and real audio streams are all found in the object tag. We then proceed by examining image tags. Although image tags are compared, no fetch is done. This speeds up the progress of the classifier. Information is examined from the alt, width and height tags. Thus, good image rations and keywords will rank higher. Finally, link tags, div tags and html text are examined for good keywords as well. Their ranking is less significant due to their reduced importance.

The Image Ranker is a ranking algorithm which is based on the image fetching capabilities of our crawler. Using our built fetcher, it examines pages that contain web camera images. If one is found, it classifies the page as a webcam page. This method omits pages that have streaming Real Audio or Windows Media player components because these require complex image capture techniques.
Finally, the combined classifier is very restrictive because it combines the two above techniques. This combination creates a classifier that will only index the webpage if it has the desirable tags and contains a standard type image.
Field Indexing Techniques

We indexed the following fields:
· street address

· server country

· refresh rate

· relative path of image
· day/night

· availability

The server country was determined by first finding the fetched URL in the database. Then, from the URL, we determined the IP address. After that, we converted IPs into the long format and searched over the results in a CSV country IP table. To accomplish this, we used a CSV reader package and an IP table available over the internet.
The refresh rate was computed by 2 methods. One involved image processing over 2 minutes. We used this method for indexing a small amount of URLs. For a larger batch of URLs, we used an algorithm that attempted extraction of refresh rate from html code by looking over a series of keywords. The address was also extracted using the second method.
Finally, we fetched the images from the page and compared them. The image with the highest score was deemed a webcam image. It was fetched to disk and archived. The image path on disk was then indexed and the result was examined. Based on the brightness of the image, day or night was determined. The refresh rate was examined by fetching about 6 images over 2 minutes. We ensured politeness by specifying http request headers and setting timeouts to our sockets. If no changes were found, this meant that the camera was not available or that it was down. Based on when the image was changed, a refresh date was computed.
3. JSP front end

We modified the existing Nutch front end to accommodate our web camera search engine needs. In the basic search form, we added to our results a graphical web camera image as well as other details that might interest the user such as refresh rate. We, then, created an advanced search form that queried over all the fields that were of interest to the user. Some examples of queries are country, location and so on. This was difficult since it required understanding of a complex JSP and XML interleaved front end that based its choices on a Lucene and Nutch query combination. Interestingly enough, we chose to display images on our own server because we did not wish to upset web camera web pages with cross linking.

Design decisions-Lessons learned

Creating a good crawler and analyzer requires very complex classifying and data mining algorithms. We tried several diverse classifier packages and found that many of them were not suited for webcam classification. These included: ClassifierJ and a Naïve Classifier algorithm that worked in real time as opposed to saving in databases. Work in the field such as WEKA (a machine learning java library), is quite complex and needs changes for application to our task.

On many occasions, we decided to use our own custom made functions to accomplish classification tasks. This required many tests and data analysis on our part. Many times, it required a lot of balancing. Changing several scorings meant inclusion or exclusion of other unintended terms. Each time, testing was required to ensure maximal success rate. In the beginning, the Rank Classifier class did not have an exclusion list. We changed that feature and made it so that it excluded words found in title or keywords. The RankClassifier would rank false when excluded words were found in these tags. This improved our ranking greatly with few false negatives. We also increased the significance of the keywords in the image alt tags, in Meta keywords and title. This further improved our success rate.

A good design decision was to construct the indexing components separately. It allowed us to better test results before actual integration. This made the final integration into Nutch relatively painless. With few command line parameters, we were able to add many new options to Nutch. We constructed all added functions this way, providing main methods for testing and carefully designed test cases. Once the particular component was integrated into Nutch, we provided the modularity and documentation required for future updates. The result is indeed very useful for future development. Steve McConnell recounts "The ideas of modularity and information hiding are design fundamentals" (McConnell 63). That proved true in our case.

We finally ensured that Nutch was able to handle the great amount of web data furnished by the fetcher. It required accounting for many unexpected cases. This is a common problem in most search engines: "Fast crawling technology is needed to gather the web documents and keep them up to date. Storage space must be used efficiently to store indices and, optionally, the documents themselves... handled quickly, at a rate of hundreds to thousands per second." (Brin and Page 1) To solve these problems, we ensured that during the indexing, our software would not fail in obscure cases such as very slow websites, non existing images or immense amount of data. We made sure that the amount of data indexed maintained atomicity. We also provided error handling and logging for fringe cases.
 We were successful at adding correct timeouts so that our indexing was not too time consuming. This ensured fast fetching and processing. In cases where pages used complex redirects, we handled errors by adding appropriate fields and continuing information retrieval for subsequent fields. This ensured that we could index the maximum amount of data.

We did a good job at ensuring modularity and smooth integration into Nutch. Due to this, once the integration was completed, only a few errors were found. Providing the framework to conduct modular tests and the possibility to choose any module is a great asset to any software project.
Quantitative Analysis

Field accuracy

When indexing the fields required by the user, our success rate was subject to a wider range of factors than expected. Fields such as server country were solely dependent on server IP and CSV table, thus the accuracy was very high.
Although fetching the image was relatively easy, many camera websites hid their web cameras behind live streams. Thus fetching those images correctly was very difficult due to parsing syntax or requiring extensive experience in video processing.
As revealed by the Figure 1 below, our image indexing rate was very good. However, the error rate caused errors in the image refresh rate mode2 and in the image availability codes. Those codes required image processing of over 2 minutes and were always successful in the fetched content.
Day night algorithm was also always successful, yet due to the image field the usefulness was also limited. Finally address was very low due to fact most people do not store addresses on web space.
Clearly, our image fields yielded very good results since around 25% of web cameras are streams. If future work with video streams is to be done, this would greatly improve all of our fields.
[image: image1.emf]Successful field indexing rate

0

10

20

30

40

50

60

70

80

90

100

Fields

percentage

Image field

Image Refresh Rate

Image Refresh Rate mode2

Image Availability

Address

Server Country

Day Night

Figure 1 – Representation of indexing success for new attributes added
Classifier Analysis

To analyze the success rate of our ranking functions we have performed an experiment on limited amount of data.
For this experiment we used two starting seed lists. First list (good list) included 105 URLs manually selected to be URLs for webcam pages, while the second list (bad list) encompassed the same amount of URLs randomly selected from the content of the DMOZ search engine.
The experiment was divided into six subsections. Each one performed the same algorithm:
· Inject the database with the selected list of URLs

· Generate segments based on the injected URLs

· Crawl the web the retrieve data

· Update database with information fetched

· Index data retrieved using one of the three ranking algorithms

This algorithm was performed for all three ranking algorithms for both good and bad list of URLs. The results of these six runs for the algorithm mentioned above are presented in Table 1 below.
When we decided to test these rankers, we were expecting them to have a somewhat similar performance when determining whether a webpage is a webcam or not. Our expectation was that their level of efficiency would be within +/- 15 % from one another. However, as the results below reveal, that was not the case. Our Simple Classifier based on parsing of the HTML content of the pages fetched, had 75% efficiency while the Image Classifier based on analyzing image properties had only 21% efficiency.
	Table 1: Correct classification for webpage rankers

	
	Simple Classifier
	Image Classifier
	Combined Classifier

	Good Links
	78 / 105
	22 / 105
	15 / 105

	
	75 %
	21 %
	14 %

	Bad Links
	105 / 105
	104 / 105
	105 / 105

	
	100%
	99%
	100%

	Total correct
	183/210
	126/210
	120/210

	
	87%
	60%
	57%

A visual representation of the data in Table 1 is shown in Figure 2. There, we notice that the Combined Classifier has given us the lowest efficiency of the three rankers, but it is also the ranker with the highest accuracy since it is pruning false positives not caught by one of the other two classifiers.
[image: image2.emf]Total Ranker Efficiency

0

10

20

30

40

50

60

70

80

90

100

Classsifier type

percentage

RankScore Classifier(Simple)

Image Classifier

Combined Classifier

Figure 2 – Representation of ranker efficiency based on 210 URLs sample
The fact that our Image Classifier has performed relatively low compared to the Simple Classifier is due in part, as mentioned above, to the fact that many web pages have the web camera images as part of live streams or are manipulated by scripts. This makes retrieval for processing and analysis somewhat difficult.
On the other hand, if we take into account the experimental results rendered by applying our classifiers on random data (none of the links contained webcams - as verified later), we notice that in our approach we strived more for accuracy since all of the classifiers return less than 0.1% false positives.
Since this approach is limiting the amount of information we can ultimately provide to the user, in a future work we will need to tackle a better algorithm for retrieval of images from pages to improve our Image Classifier. To improve our text parsing techniques, we would also work on a better stop word list so that we would also increase the efficiency of Simple Classifier and eventually increase the value of our search engine by providing more and better information to the end user.
Conclusions
During this particular project, we learned to foresee and to anticipate the complex realities of the internet. We took into account many difficulties. In the end, our work paid off in the amount of features we were able to add. We worked together with limited time due to charged and conflicting schedules, yet we managed to accomplish a lot. Our combined planification, error prevention techniques and team work efforts resulted in an enjoyable and useful project.
Recommendations/Future Work

Our existing design can be used as a framework for a more complex image fetcher. The fetcher can be modified to accept image data from complex video streams as to yield an estimate success rate of around 90-95% for many of the existing fields. Another recommendation is the use of hidden Markov models to retrieve the address field which currently has a lower retrieval rate. Research such as: "the task of recovering… as well as the sparse extraction tasks." (McCallum 1) proves that such methods would yield a much higher accuracy rate. The current design is superior to existing webcam indexes which often lack search forms. However, a complex design involving HMM’s would yield an even larger usage of the technology.

In future work, the usage of OCR techniques on web camera images would also be useful. One such package is provided as a trial SDK by Asprise. However, licensing an OCR engine might be a better solution.

Appendix A – Attribution
Constantinos Papadopoulos

My contribution in our project includes my work in the following areas:

Image fetching, Image Classifying, and Report. Working on this project was a great experience in many ways. For example, I learned the importance of conducting good research before coding, as well as the importance of being able to “escape” from a bad design. Initially, I had designed a parser that would analyze a page source and would determine whether the page contained a webcam image. However, due to the huge variation of web pages on the Internet, manually parsing the page was not a good idea. In some cases, web pages that were not formatted in a “conventional” manner would cause my code to crash. I would then adjust my code to go around the error, but 5 minutes later, my code would fail on a different page. With the help of Razvan and some Java libraries our problems were solved. Had I done more research at the beginning, or had I changed my design earlier, I would have saved myself from a lot of frustration.
Aurel C. Pop
For this project we have all participated in the algorithm design for all the code that ended up in our project. The actual implementation was done separately by the group members or in group sessions of two or three. Personally I worked on the RankScoreClassifier class that ranks the web pages and classifies them as webcam pages or not, also I have worked on indexing the extra fields in the Document object by modifying the IndexSegment class. Furthermore, I have worked on debugging and testing our implementations and did several crawling and indexing sessions for the experimental analysis and for our final version of the product. We all worked on putting together this report and the final presentation.

This project was a good learning experience for me since I have learned a lot about search engines, crawlers, and java server pages. I have spent some time trying to implement a focused crawler using a Bayesian algorithm, idea that we ended up abandoning due to the lack of time. I have also spent some time getting familiar with java server pages, understanding how Nutch - actually Lucene - searching capabilities are integrated with Tomcat to render the results of our work to the end user. I have also got some valuable non technical experience in project management and team interaction.
Razvan Radu Gheoca
For the course of this project, I worked on the computer vision code and tried to improve its exactitude. Furthermore, I designed the image fetcher together with Constantinos and worked a bit with Colin on the Rank Classifier. Working with the image fetcher was very time consuming but fun as well. I really enjoyed Java's efficient algorithms for stopping threads. It helped me a lot when designed the timed fetcher. Sometimes, I was surprised that Nutches fetcher supplied content differently from the image fetcher. However, due to careful testing, those problems were rapidly fixed. We carefully improved the image fetcher by adding politeness and timeouts. We took a long time to find appropriate classes that allowed this, yet because of correct timeouts our design was web ready. I coded the image finder for java applets used in the Ranker later on. That was surprisingly easy and interesting. It was surprising because I first imagined that code parsing would be required, however that was not the case.

For project coordination, my duties were merely to find appropriate times for the team to meet and communicate them to my team mates. I always tried to accommodate any particular urgent matters they might have and this paid off with increased team productivity.

Finally, I did some of the logo work. It was fulfilling but due to the need to work on other features, I did not construct a whole new web theme for Nutch.

In conclusion, I am very proud of my participation in this project. I really enjoyed working with this cutting edge technology and looking at some of the algorithms that could be used to solve complex real world problems. I appreciate the contribution of my team mates, because together we created something that we will all enjoy.
Appendix B - Other Code
Documentation

http://htmlparser.sourceforge.net/javadoc/index.html
http://java.sun.com/reference/api/index.html

http://lucene.apache.org/nutch/apidocs/index.html

http://lucene.apache.org/java/docs/api/index.html

http://ww.xpcommander.com/cse454/

Libraries used

· CVS Reader: A parser for the excel file format. "A small java class (5 KB) with which you can parse CSV files. It knows different separator chars, multi line fields and separators inside field values. A small java class (5 KB) with which you can parse CSV files."

Why? This was used when I read a CSV file because I did not want to parse in the characters.
http://www.cweiske.de/

· Html Parser: Open source libraries used to parse html. "A super-fast real-time parser for real-world HTML. What has attracted most developers to HTMLParser has been its simplicity in design, speed and ability to handle streaming real-world html."

Why? This was used as a replacement for CyberNecko's HtmlParser libraries. It was very useful in parsing all our html tags.
http://htmlparser.sourceforge.net/
· JDK1.5.0.03: These are the java development libraries. We needed those by default.

"Java 2 Platform, Standard Edition (J2SE) provides a complete environment for applications development on desktops and servers and for deployment in embedded environments."

Why? We needed those libraries to develop in Java.
http://java.sun.com/j2se/index.jsp
· Nutch: An open source search engine. Contains its own used libraries such as Lucene.

"Nutch is open source web-search software. It builds on Lucene Java, adding web-specifics, such as a crawler, a link-graph database, and parsers for HTML and other document formats, etc."

Why? We used it as a base for our own web camera engine.
http://www.nutch.org

References
Brin Sergey and Page Lawrence.(1999) The Anatomy of a Large-Scale Hypertextual Web Search Engine. Stanford, California.
Retrieved June 1st, 2005 from http://www.cs.washington.edu/education/courses/cse454/CurrentQtr/papers/google.html.
Freitag, Dayne and McCallum, Andrew. (1999) Information extraction with HMM structures learned by Stochastic Optimization. Pittsburgh, PA.
Retrieved 1 June 2005 from
http://www.cs.washington.edu/education/courses/cse454/CurrentQtr/papers/iehill.pdf

McConnell, Steve. (1996) Rapid Development . Microsoft Press, Redmond.
