iWebcams
The webcam search engine from group i

Authors
Lam Nguyen
Michael Chan
Khalil El Haitami
Burt Bielicki
June 4, 2005

Abstract
This paper describes iWebcams, a focused-crawl search engine that identifies webcams and extracts information about them. It also presents analyses of the inner workings of iWebcams.

The open source search engine Nutch was used as a code base for the iWebcams project. Naïve Bayes classifiers of page text and heuristics were used to detect whether or not a webpage contained a webcam. Each webcam page text was examined to determine the physical location of the webcam. IP address lookups were used when the location could not be found in the text. The design decisions and architecture details of the iWebcams project are discussed in more detail in the following report.

iWebcams
Statement of Problem Addressed

There are thousands of cameras connected to the Internet, but they aren't indexed in a way which makes them easy to use. The iWebcams project is a specialized search engine to find and index webcams.
Description of Architecture

The key components of the iWebcams architecture are its crawler, parser, indexer, and user interface.

Crawler
The iWebcams crawler is the standard Nutch crawler. It is given a specialized seed list which consists of many webcam pages as well as webcam “hubs,” or pages that are indexes of webcams. Webcams have also been found by crawling random pages from the Internet.
Parser
The parser has several key components that allow iWebcams to detect whether or not there is a webcam on a webpage or not. Initially we tried to develop one Bayesian classifier for webcams. However we found that modeling webcams as several disjoint subsets worked much better.

Given the contents of a page, the parser will check the page for the following:

· Meta-data refresh

· Browse no cache

· Media Streams

· JavaScript probability

· Java Applet probability

· Text Classifier Score

A certain score amount is given to the page for each of the above found. If media streams are detected the page is automatically considered a webcam.

If the score does not reach a certain threshold (30 in current version), then a document with null data is passed back from the parser.

Precision and Recall

On a sample set of 32 pages:

	
	Relevant
	Not Relevant

	Retrieved
	13
	0

	Not Retrieved
	1
	18

	
	Precision
	Recall

	Image
	86%
	71%

	Text
	82%
	78%

	Refresh
	82%
	50%

	Java Applet
	91%
	83%

	Java Script
	85%
	68%

	Overall
	92%
	87%

Naïve Bayes Text Classifier

Our text classifier initially used the Naïve Bayes Algorithm, and it performed decently, but it gave non-webcams an unfair advantage since non-webcams contain more text. We switched our text classifier to be based on the Text Naïve Bayes Algorithm. As a reminder, the Text Naïve Bayes Algorithm is as follows:

Let V be the vocabulary of all words in the documents in D.

For each category ci,

Let ni be the total number of word occurances in the ci.

Let nij be the number of occurances of word wj in category ci.

[image: image1.wmf](

)

|

V

|

n

1

n

c

|

w

P

i

ij

i

i

+

+

=

This unmodified algorithm gave us bad results. For the classification space of webcams and non-webcams, the algorithm only gave us a classification of non-webcams for all pages comprising of both webcams and non-webcams. We hypothesized that this was due to the large difference of size between the vocabulary of webcams and vocabulary of non-webcams.

For webcams, both nij and ni tend to be small since webcam pages tend not to have many words, so P(wi|ci) is dominated by |V|, which is large. For non-webcam pages, nij will be will be significantly larger compared to nij for webcams. ni will also be larger and will be very close to |V|.

We decided to modify the algorithm by giving |V| less influence. We added a constant k, which we call “the magic number”, where 0 ≤ k ≤ 1 to multiply to |V|, bringing that term down. We used k = 0.1 for our implementation.

[image: image2.wmf](

)

|

V

|

n

1

n

c

|

w

P

i

ij

i

i

k

+

+

=

Using this modified algorithm we obtained much better results.

Image Classifier
Our parser not only parses the text of the page, but also images on the page. Currently we support getting images from two sources. The first and more prevalent source is from the tags from the html of the page. The other source is from a parsed Java webcam.

The data that we collect from an image is height, width, and last modified date. From the last modified date and the fetch date, we could determine that the image was updated recently and can guess the frequency of updates. We say that an image is a webcam image if it has been last updated in the last day.

As with any attribute that we test for webcams, the image classifier isn’t perfect. If someone were to post an image that wasn’t a webcam image on their page within the last day (which commonly happens on personal blogs), the image classifier would classify it as a webcam image.

Also relying solely on the last modified date misclassifies images that are dynamically generated, which is common for weather sites where they generate an image that has the current temperature, or display an image generated from a doppler radar. To fix this, we also look at the image’s aspect ratio and filter out images that have unusual aspect ratios. The majority of the webcams have similar aspect ratios, however webcams exist that have unusual aspect ratios, such as a panoramic webcam.

Downloading images is extremely slow when compared to downloading the text content of a page. Therefore we tried to minimize image downloading. First we tried to filter out images before downloading by looking at the html. We looked at the height and width tags of an , however most of the images we looked at didn’t contain these tags so we decided not to rely on this. We also proposed that webcam images do link to another page. When this was implemented, this filtered out webcam images that linked to other pages, so this proposal was incorrect. We finally decided to only download the images if there was some other indication that the page was a webcam page, such as from text classification or the presence of Java cam code. Another optimization was to keep track of which image urls we downloaded so that we don’t download images more than once, since it is common for web pages to display the same image many times.
JavaScript and Streaming Media

Streaming media pages allow us to fingerprint based off of two formats:

· Microsoft .asx video streams

· RealPlayer streams

Specifically with these two technologies there was no need for a Bayesian classifier the HTML of the page was parsed for certain tags when a page would load these streams.

Due to the nature of JavaScript webcam pages being hand coded, a JavaScript Score is generated based off of the analysis of the function declarations within the java script. Certain functions or keywords within functions names were parsed for, such as “function MM_preloadImage()” and “function *refresh*()”.

Java Applet Classifier

Pages that loaded Java applet webcams have a set of properties that are specific to Java applets, and thus a Bayesian classifier can be applied. There are three properties that are classified when a Java applet is detected.

· Java class file loaded

· Refresh parameter

· Image update time
The formula used to calculate the probability a page is a Java Applet webcam given that it is a webcam.

[image: image3.wmf]

(

propertyCount

(

E

)

·

1

.

2

)

+

(

priorP

(

E

.

category

)

·

smoothing

)

(

count

+

smoothing

)

=

P

(

E

|

Webcam

)

The variable propertyCount(E) is the number of times the trainer has seen property E. The variable priorP(E) is the probability that a page, given that it is a webcam, is within the E.category. Higher priority was given to the frequency of the property occurring. The 20% weight increase in propertyCount(E) combined with a smoothing estimate produced the best results for webcam scoring. These values were obtained through experimentation.

The sum of the probability of each property found on the page are taken, resulting in the final probability that the page belongs to that category given that it is a webcam.
· Other Heuristics

· Refresh Tags

· No-Cache Tags

· Image Size Attributes

Indexer

Nutch makes stored pages searchable using the Lucene indexer. Additional indexing is done by iWebcams to make searching by location possible. The indexer also contains code to extract location information from webcam pages.

· Page Location Finder

A natural way to find the location of a webcam is to read its webpage. Because location is important to many viewer, webcam pages often state where they are located. The pageLocationFinder module “reads” the text of each webcam page and looks for location information.

Every word n-tuple in each webcam page is compared against a hash table of countries and states (a.k.a. major locations). Currently 2-tuples are searched, and then single words; this is necessary so that, for example, New Mexico will not be identified as Mexico. When a match is found, pageLocationFinder back-traces and guesses as to what it thinks the city associated with the major location is (based on text formatting). Then, depending on the availability of data, another hash table can be used to check if that city text is known to be in the found major location.

The pageLocationFinder uses a greedy search to find the best location. A scoring system is used that ranks locations by confidence in their validity. The lowest score is given to locations that consist of only major locations that are abbreviated, and the highest score is given to locations that have a city and a major location, both of which have been verified with hash files.

· IP Address Locater

When there is little or no location information available in a webpage, the IPLocate module tries to discover the webcam’s location from its IP address. The domain name of the webpage is extracted from its url and passed to various WHOIS servers. WHOIS servers contain information that web servers supply when they register their domain name. Often the location or approximate location of a webcam can be found in the WHOIS information of its domain.

· IPLocate extracts location information from the results of WHOIS queries on the webcam page’s Internet domain name by making recursive calls to pageLocationFinder. If pageLocationFinder cannot find a location, then WHOIS format-specific heuristics are used to extract the most probable location.

· Indexes for Search

The indexes that are included in webpages by Nutch are for the pages’ urls, anchor texts, and page texts. More indexes are added by iWebcams so that locations can be searched for by text queries. There are also indexes that provide support for future latitude/longitude proximity searches.

User Interface

The iWebcams project supports a user-friendly, all-in-one functionality search box that gives access to the full power of the iWebcams search engine while maintaining a familiar and intuitive feel.

Users are then presented with traditional style search engine results with the extracted location of each webcam next to its title.

Key Experiences (Successes and Failures)

There were several design decisions behind iWebcams. They are summarized below.

Parser

· Modification Crawl –depth n for –noParse (n > 1)

The current Nutch architecture requires a parse in order to do a crawl of depth greater than 1. Parsing is required in order to produce the outlinks for the next depth iteration. Attempted to modify the UpdateDatabaseTool.java to allow a –noParse option. This would allow us to fetch vast amounts of data beforehand and allow us the parse and index the data at a later time, as many times as we want w/o using extra bandwidth.

With the current Nutch architecture, there were too many points in the UpdateDataBaseTool.java would fail due to it expecting parse data to exist, or it was looking for the wrong fetcher data (fether_output for fetch only mode). Lots of flags and branches were done to allow the system to run however too many issues occurred with this modification.
Indexer

· Page Location Finder

The following possible designs of pageLocationFinder were considered: find first location by hash, greedily find location by hash, “understand” text with grammatical parse trees, optical character recognition (OCR).

Taking the first location with hash tables was simple to implement and actually produced decent results on several webcam pages. It also ran extremely quickly. However, the results were often more general than they should have been, for instance only finding what state the webcam was in when the city text was easily identifiable by a human reader. This was a decent first attempt, but was not satisfactory for a finished product.

Greedily finding the location was the design decision of choice. It performs much better than find first because there are several instances where locations are mentioned at the bottom of the webpage, etc. It also runs fairly quickly. The accuracy of pageLocationFinder is especially good for locations that are in the hash tables, although finding the data took painstaking research. The heuristics for deriving cities from text, such as following capitalization and punctuation marks, also proved accurate for city locations that were not in the location hashes.

Using parse trees could improve the accuracy of pageLocationFinder in some instances, but this feature would be much more difficult to implement. In pre-coding algorithm tests, as well as in actual tests with the greedy find location by hash, it was discovered that parse trees would only increases pageLocationFinder’s accuracy by a minimal amount.

Optical Character Recognition was also ruled out. Using the open source OCR package JOCR, pre-coding tests showed that OCR directly on webcam images returned poor quality results. Actual tests also revealed that OCR would only increase pageLocationFinder’s accuracy by a minimal amount.

· IP Address Locater

This part of the code considered querying multiple whois servers and other websites that support whois lookups provided that we converted the url to either a DNS or to an IP address. The responses don’t follow a unique format and therefore they couldn’t be treated similarly, moreover there is the difference of html tags. The information is extracted greedily by checking every line of the responses against a hashTable (dictionary used by BestLocationFinder) that has information about cities in the US (which could be extended to any other city in the world since we had the files but we didn’t want to consume more space) therefore this part focused mainly on pages that are in the US. In case the previous solution fails then it will guess the block of data, from the response, where it is going to extract the city information.

One of the challenges in this part was the unpredictability of the outcome of the whois server response. Within the same response one might find more than one location and only one of them gives a good approximation, so the guess it makes is greedy, therefore it is not 100% right.
The other challenge is how to manage to avoid triggering any bad reaction from the whois servers and websites that help query the whois servers. Because, once these sites realize that the same IP is querying there website they tend to feel threatened and they close the doors and in some extreme cases they even keep the IP address in their black list and this results in no access to the information, unless one gives them a call, email or send them lots of money (some of them asks for it because it is their business). Therefore the option of querying websites that support whois lookups was dropped for fear of law suit. And the whois, linux client was used along with another program developed in C++ to get the information needed.

In order to improve this feature I think it would be better if we take this as an opportunity and incrementally build a database that maps host/IP address to location from all the groups and save it on a local server in the school. This will minimize greatly the access of the whois servers
Quantitative Analyses

Page Location Finder & IP Address Locater

Results of Test Crawl
Greedily finding best location, URL country code lookup, and IP address locater
	# of pages classified as webcams:
	21

	 w/ correct location:

	15

	 could've had more detail:

	2

	 --more detail would be found w/
	

	
 notable locations
	
2

	
 meta tag parsing

	
0

	
 n-tuples with n > 2
	
0

	
 more city files

	
0

	
 url combined with text search
	
0

	
 OCR (maybe)

	
0

	
 parse trees

	
0

	 extra info found (beyond city)
	2

	 -- extra info that was incorrect
	
0

	 w/ incorrect location:

	0

	 with no location:

	6

	 correct:

	3

	 incorrect:

	3

	 --OCR needed

	
1

	 --need notable locations
	
2

	 --info found with IPLocate
	6

	
correct:
	5

	
 -- can’t be verified
	
1

	
incorrect but geographically close
	1

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

These results show that the next best feature to implement for pageLocationFinder would be notable locations. Notables locations are places whose locations are commonly known without stating what country or state it is in, for example, Seattle, Madrid, Times Square, etc.
Appendices
Appendix A. Attributions
Lam Nguyen

- page text webcam classifier, image classifier

Michael Chan

- page code webcam classifier, crawl fetch modification (failed)

Khalil El Haitami
- IP address location lookup

Burt Bielicki

- page text location finder

Appendix B. Other Code

Data files for pageLocationFinder

Country Abbreviations:

International Standards Organization (ISO)

<http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html>
Local Names for Countries:

Central Intelligence Agency of the United States (CIA)

<http://www.cia.gov/cia/publications/factbook/appendix/appendix-f.html>
URL Country Codes:

Internet Assigned Numbers Authority (IANA)

<http://www.iana.org/cctld/cctld-whois.htm>

United States Cities:

United States Census Tiger/Line Files

<http://www.census.gov/tiger/tms/gazetteer/places2k.txt>
Referenced code (not included in iWebcams)

JOCR (originally GOCR), <http://jocr.sourceforge.net/>, used in testing

Appendix C. Nutch Hacks

Referral Hacks

Certain domains would refuse to let users download images unless the HTML referral tag was from their domain. So we added “Referer: <host>” to the http request where <host> is the host of the url requested, fixing this issue.

Threading Issues

When running a parse, Nutch would mysteriously hang after a parse was done. We traced it to the part of the code in ParseSegment.java that waits for threads to finish before cleaning up. The problem was that the thread count was incorrect. Nutch’s implementation used ThreadGroup.activeCount() to determine the number of active threads left. This number was wrong for some cases (off by one). The API says about activeCount: “Due to the inherently imprecise nature of the result, it is recommended that this method only be used for informational purposes”. We implemented our own thread counter and fixed this problem.

_1179499224.unknown

_1179501009.unknown

_1053363305.unknown

