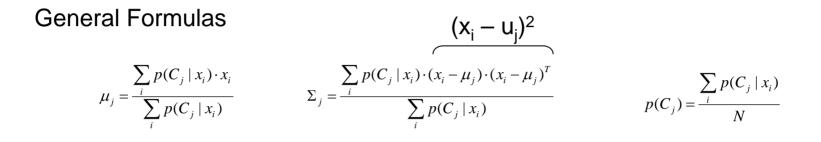


Initialization Step: for each of the K clusters C_j , initialize its mean μ_j , its variance σ_j , and its weight $\alpha_j = P(C_j)$.

Expectation Step



- General Formula $p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}$ for cluster C_i
- Explanation: find the probability P(C_j | x_i) for each pixel x_i and each cluster C_j. The formula requires
 - $P(C_j)$ (the current α_j weight for C_j)

- P(x_i | C_j) =
$$\frac{1}{\sqrt{2\pi}\sigma_j}$$
 e $-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}$

We have all the needed parameters from the initialization step.

Maximization Step

Explanation: Now that we have computed $P(C_j | x_i)$ for every cluster C_j and pixel x_i , we just use them to update the mean, the variance, and the weight (probability) of each cluster.

The process repeats the expectation and maximization steps till some stopping criterion is reached.