Security and Cryptography

Security Threats

- Impersonation
 - Pretend to be someone else to gain access to information or services
- Lack of secrecy
 - Eavesdrop on data over network
- Corruption
 - Modify data over network
- Break-ins
 - Take advantage of implementation bugs
- Denial of Service
 - Flood resource to deny use from legitimate users

Three Levels of Defense

- Firewalls
 - Filtering "dangerous" traffic at a middle point in the network
 - Covered next lecture
- Network level security (e.g. IPsec)
 - Host-to-host encryption and authentication
 - Can provide security without application knowledge
- Application level security
 - True end-to-end security
 - Requires extra effort per application
 - Libraries help, like SSL/TLS

Private Key Cryptosystems

- Finite message domain M, key domain K
- Key $k \in K$
 - Known by all parties
 - Must be secret
- Encrypt: E: M × K → M
 - Plaintext m_p to ciphertext m_c as $m_c = E(m_p, k)$
- Decrypt: D: M × K → M
 - $m_p = D(m_{c'}, k) = D(E(m_{p'}, k), k)$
- Cryptographic security
 - Given m_c, hard to determine m_p or k
 - Given m_c and m_p, hard to determine k

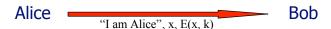
One Time Pad

- Messages
 - n-bit strings [b₁,...,b_n]
- Keys
 - Random n-bit strings [k₁,...,k_n]
- Encryption/Decryption
 - $c = E(b, k) = b \oplus k = [b_1 \oplus k_1, ..., b_n \oplus k_n]$
 - \oplus denotes exclusive or
 - $b = D(b, k) = c \oplus k = b \oplus k \oplus k = b \oplus [0, ..., 0] = b$
- Properties
 - Provably unbreakable if used properly
 - Keys must be truly random
 - must not be used more than once
 - Key same size as message

Simple Permutation Cipher

- Messages
 - n-bit strings [b₁,...,b_n]
- Keys
 - Permutation π of n
 - Let $\sigma = \pi^{-1}$
- Encryption/Decryption
 - $E([b_1,...,b_n], \pi) = [b_{\pi(1)},...,b_{\pi(n)}]$
 - $D([b_1,...,b_n], \pi) = [b_{\sigma(1)},...,b_{\sigma(n)}]$
- Properties
 - Cryptanalysis possible
 - Only small part of plaintext and key used for each part of ciphertext

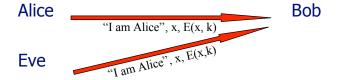
Data Encryption Standard (DES)


- History
 - Developed by IBM, 1975
 - Modified slightly by NSA
 - U.S. Government (NIST) standard, 1977
- Algorithm
 - Uses 64-bit key, really 56 bits plus 8 parity bits
 - 16 "rounds"
 - 56-bit key used to generate 16 48-bit keys
 - Each round does substitution and permutation using 8 Sboxes
- Strength
 - Difficult to analyze
 - Cryptanalysis believed to be exponentially difficult in number of rounds
 - No currently known attacks easier than brute force
 - But brute force is now (relatively) easy

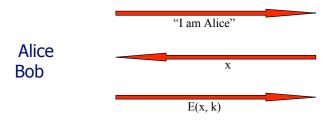
Other Ciphers

- Triple-DES
 - DES three times
 - $m_c = E(D(E(m_p, k_1), k_2, k_3))$
 - Effectively 112 bits
 - Three times as slow as DES
- Blowfish
 - Developed by Bruce Schneier circa 1993
 - Variable key size from 32 to 448 bits
 - Very fast on large general purpose CPUs (modern PCs)
 - Not very easy to implement in small hardware
- Advanced Encryption Standard (AES)
 - Selected by NIST as replacement for DES in 2001
 - Uses the Rijndael algorithm
 - Keys of 128, 192 or 256 bits

Private Key Authentication


- Alice wants to talk to Bob
 - Needs to convince him of her identity
 - Both have private key k
- Naive scheme

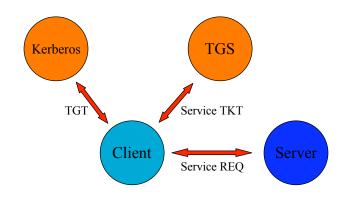
Vulnerability?


Replay Attack

• Eve can listen in and impersonate Alice later

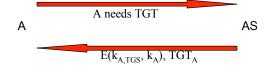
Preventing Replay Attacks

Bob can issue a challenge phrase to Alice


Key Distribution

- Have network with n entities
- Add one more
 - Must generate n new keys
 - Each other entity must securely get its new key
 - Big headache managing n² keys!
- One solution: use a central keyserver
 - Needs n secret keys between entities and keyserver
 - Generates session keys as needed
 - Downsides
 - Only scales to single organization level
 - Single point of failure

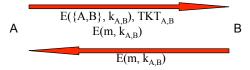
Kerberos


- Trivia
 - Developed in 80's by MIT's Project Athena
 - Mythic three-headed dog guarding the entrance to Hades
- Uses DES, 3DES
- Key Distribution Center (KDC)
 - Central keyserver for a Kerberos domain
 - Authentication Service (AS)
 - Database of all master keys for the domain
 - Users' master keys are derived from their passwords
 - Generates ticket-granting tickets (TGTs)
 - Ticket Granting Service (TGS)
 - Generates tickets for communication between principals
 - "slaves" (read only mirrors) add reliability
 - "cross-realm" keys obtain tickets in others Kerberos domains

Kerberos Authentication Steps

Kerberos Tickets

- What is a ticket?
 - Owner (Instance and Address)
 - A key for a pair of principles
 - A lifetime (usually ~1 day) of the key
 - Clocks in a Kerberos domain must be roughly synchronized
 - Contains all state
 - Encrypted for server
- Ticket-granting-ticket (TGT)
 - Obtained at beginning of session
 - Encrypted with secret KDC key



Kerberos – A wants to talk to B

First, get ticket from TGS

A
$$E(\{A,B\}, k_{A,TGS}), TGT_A$$
 TGS
$$E(k_{A,B}, k_{A,TGS}), TKT_{A,B}$$

• Then, use the ticket

Using Kerberos

- kinit
 - Get your TGT
 - Creates file, usually stored in /tmp
- klist
 - View your current Kerberos tickets
- kdestory
 - End session, destroy all tickets
- kpasswd
 - Changes your master key stored by the AS
- "Kerberized" applications
 - kftp, ktelnet, ssh, zephyr, etc
 - afslog uses Kerberos tickets to get AFS token

Diffie-Hellman Key Agreement

- History
 - Developed by Whitfield Diffie, Martin Hellman
 - Published in 1976 paper "New Directions in Cryptography"
- Allows negotiation of secret key over insecure network
- Algorithm
 - Public parameters
 - Prime p
 - Generator g < p with property: $\forall n: 1 \le n \le p-1$, $\exists k: n = g^k \mod p$
 - Alice chooses random secret a, sends Bob ga
 - Bob chooses random secret b, sends Alice g^b
 - Alice computes (g^b)^a, Bob computes (g^a)^b this is the key
 - Difficult for eavesdropper Eve to compute gab

Diffie-Hellman Weakness

- Man-in-the-Middle attack
 - Assume Eve can intercept and modify packets
 - Eve intercepts g^a and g^b, then sends Alice and Bob g^c
 - Now Alice uses g^{ac}, Bob uses g^{bc}, and Eve knows both
- Defense requires mutual authentication
 - Back to key distribution problem

Public Key Cryptosystems

- Keys P, S
 - P: public, freely distributed
 - S: secret, known only to one entity
- Properties
 - x = D(E(x,S), P)
 - x = D(E(x,P), S)
 - Given x, hard to determine E(x, S)
 - Given E(x, P), hard to determine x

Using Public Key Systems

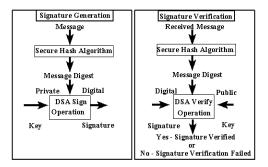
- Encryption Bob sends to Alice
 - Bob generates and sends $m_c = E(m_p, P_A)$
 - Only Alice is able to decrypt $m_p = D(m_c, S_A)$
- Authentication Alice proves her identity
 - Bob generates and sends challenge x
 - Alice response $s = E(x, S_{\Delta})$
 - Bob checks: $D(s, P_A) = x$
- Weakness key distribution (again)
 - If Bob gets unauthentic P_A, he can be easily attacked

RSA

- Rivest, Shavir, Adleman, MIT, 1977
- Message domain
 - For large primes p, q, n = pq
 - p and q are actually strong pseudo-prime numbers generated using the Miller-Rabin primality testing algorithm
- Keys
 - Public key {e, n}
 - e relatively prime to (p-1)(q-1)
 - $P(x) = x^e \mod n$
 - Private key {d, n}
 - $d = e^{-1} \mod (p-1)(q-1)$ $(d*e = 1 \mod (p-1)(q-1))$
 - $S(x) = x^d \mod n$
- Strength: Finding d given e and n equivalent to finding p and q (factoring n)

Cryptographic Hash Functions

- Given arbitrary length m, compute constant length digest d = h(m)
- Desirable properties
 - h(m) easy to compute given m
 - One-way: given h(m), hard to find m
 - Weakly collision free: given h(m) and m, hard to find m' s.t. h(m) = h(m')
 - Strongly collision free: hard to find any x, y s.t.
 h(x) = h(y)
- Example use: password database, file distribution
- Common algorithms: MD5, SHA

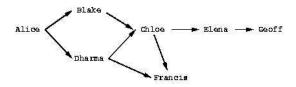

Comparative Performances

According to Peterson and Davie

MD5: 600 MbpsDES: 100 MbpsRSA: 0.1 Mbps

Digital Signatures

- Alice wants to convince others that she wrote message m
 - Computes digest d = h(m) with secure hash
 - Signature $s = S_A(d)$
- Digital Signature Standard (DSS)



Authentication Chains

- How do you trust an unknown entity?
- Trust hierarchies
 - Certificates issued by Certificate Authorities (CAs)
 - · Certificates are signed by only one CA
 - Trees are usually shallow and broad
 - Clients only need a small number of root CAs
 - Roots don't change frequently
 - Can be distributed with OS, browser
 - Problem
 - Root CAs have a lot of power
 - Initial distribution of root CA certificates
 - X.509
 - Certificate format standard
 - Global namespace: Distinguished Names (DNs)
 - Not very tightly specified usually includes an email address or domain name

Webs of Trust

- Anyone can generate keys
- Anyone can sign others' keys
- Trust relationships form a digraph
- Users decide how much they trust the signatures

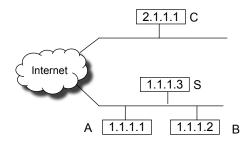
Pretty Good Privacy (PGP)

- History
 - Written in early 1990s by Phil Zimmermann
 - Primary motivation is email security
 - Controversial for a while because it was too strong
 - Now the OpenPGP protocol is an IETF standard (RFC 2440)
 - Many implementations, including the GNU Privacy Guard (GPG)
- Uses
 - Message integrity and source authentication
 - Makes message digest, signs with public key cryptosystem
 - · Webs of trust
 - Message body encryption
 - Private key encryption for speed
 - Public key to encrypt the message's private key

IPsec

- Protection at the network layer
 - Applications do not have to be modified to get security
- Actually a suite of protocols
 - IP Authentication Header (AH)
 - Uses secure hash and symmetric key to authenticate datagram payload
 - IP Encapsulating Security Payload (ESP)
 - Encrypts datagram payload with symmetric key
 - Internet Key Exchange (IKE)
 - Does authentication and negotiates private keys

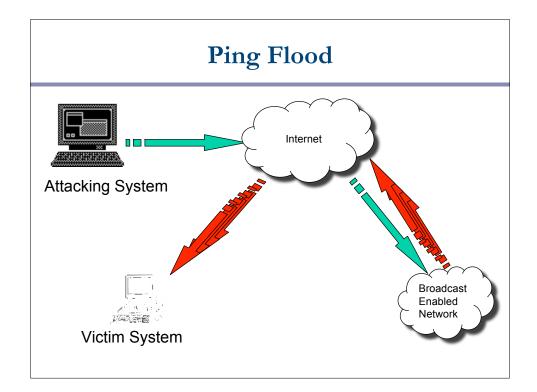
Useful References


- http://www.psc.edu/~jheffner/talks/sec_lecture.pdf
- http://en.wikipedia.org/wiki/One-time_pad
- http://www.iusmentis.com/technology/encryption/des/
- http://en.wikipedia.org/wiki/3DES
- http://en.wikipedia.org/wiki/AES
- http://en.wikipedia.org/wiki/MD5

Security Vulnerabilities

- Security Problems in the TCP/IP Protocol Suite Steve Bellovin - 89
- Attacks on Different Layers
 - IP Attacks
 - ICMP Attacks
 - Routing Attacks
 - TCP Attacks
 - Application Layer Attacks

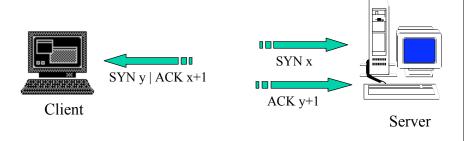
Security Flaws in IP


- The IP addresses are filled in by the originating host
 - Address spoofing
- Using source address for authentication
 - r-utilities (rlogin, rsh, rhosts etc..)

- •Can A claim it is B to the server S?
 - •ARP Spoofing
- •Can C claim it is B to the server S?
 - Source Routing

Security Flaws in IP

- IP fragmentation attack
 - End hosts need to keep the fragments till all the fragments arrive
- Traffic amplification attack
 - IP allows broadcast destination


ICMP Attacks

- No authentication
- ICMP redirect message
 - Can cause the host to switch gateways
 - Benefit of doing this?
 - Man in the middle attack, sniffing
- ICMP destination unreachable
 - Can cause the host to drop connection
- ICMP echo request/reply
- Many more...
 - http://www.sans.org/rr/whitepapers/threats/477.php

Routing Attacks

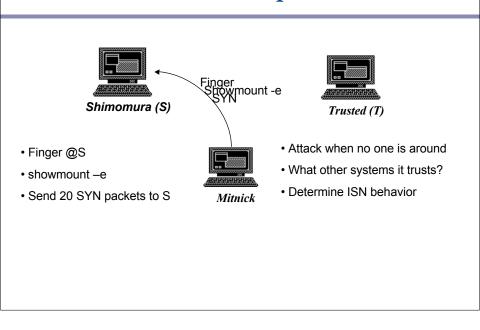
- Distance Vector Routing
 - Announce 0 distance to all other nodes
 - Blackhole traffic
 - Eavesdrop
- Link State Routing
 - Can drop links randomly
 - Can claim direct link to any other routers
 - A bit harder to attack than DV
- BGP
 - ASes can announce arbitrary prefix
 - ASes can alter path

TCP Layer Attacks

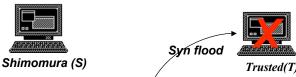
- TCP SYN Flooding
 - Exploit state allocated at server after initial SYN packet
 - Send a SYN and don't reply with ACK
 - Server will wait for 511 seconds for ACK
 - Finite queue size for incomplete connections (1024)
 - Once the queue is full it doesn't accept requests

TCP Layer Attacks

- TCP Session Hijack
 - When is a TCP packet valid?
 - Address/Port/Sequence Number in window
 - How to get sequence number?
 - Sniff traffic
 - Guess it
 - Many earlier systems had predictable initial sequence number
 - Inject arbitrary data to the connection


TCP Layer Attacks

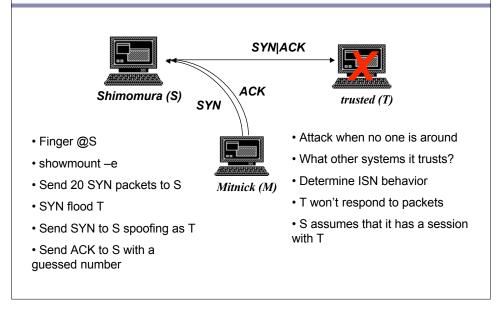
- TCP Session Poisoning
 - Send RST packet
 - Will tear down connection
 - Do you have to guess the exact sequence number?
 - Anywhere in window is fine
 - For 64k window it takes 64k packets to reset
 - About 15 seconds for a T1
 - Can reset BGP connections


Application Layer Attacks

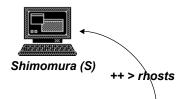
- Applications don't authenticate properly
- Authentication information in clear
 - FTP, Telnet, POP
- DNS insecurity
 - DNS poisoning
 - DNS zone transfer

An Example

An Example



Mitnick


- Finger @S
- showmount -e
- Send 20 SYN packets to S
- SYN flood T

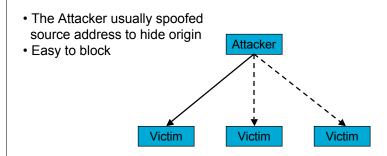
- · Attack when no one is around
- What other systems it trusts?
- Determine ISN behavior
 - T won't respond to packets

An Example

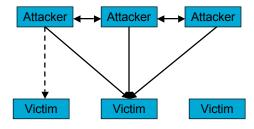
An Example

- Finger @S
- showmount -e
- · Send 20 SYN packets to S
- SYN flood T
- · Send SYN to S spoofing as T
- Send ACK to S with a guessed number
- Send "echo + + > ~/.rhosts"

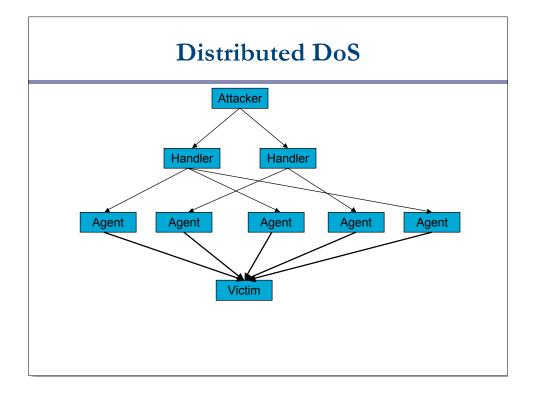
Trusted (T)


- · Attack when no one is around
- What other systems it trusts?
- · Determine ISN behavior
- T won't respond to packets
- S assumes that it has a session with T
- Give permission to anyone from anywhere

Denial of Service


Mitnick

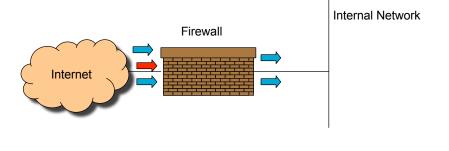
- Objective → make a service unusable by overloading
- Consume host resources
 - TCP SYN floods
 - ICMP ECHO (ping) floods
- Consume bandwidth
 - UDP floods
 - ICMP floods
- Crashing the victim
 - Ping-of-Death
 - TCP options (unused, or used incorrectly)
- Forcing more computation on routers
 - Taking long path in processing of packets


Simple DoS

Coordinated DoS

- The first attacker attacks a different victim to cover up the real attack
- The Attacker usually spoofed source address to hide origin
- Harder to deal with

Distributed DoS


- The handlers are usually very high volume servers
 - Easy to hide the attack packets
- The agents are usually home users with DSL/Cable
 - Already infected and the agent installed
- Very difficult to track down the attacker
- How to differentiate between DDoS and Flash Crowd?
 - Flash Crowd → Many clients using a service legitimately
 - Slashdot Effect
 - Generally the flash crowd disappears when the network is flooded
 - Sources in flash crowd are clustered

Firewalls

- Lots of vulnerabilities on hosts in network
- Users don't keep systems up to date
 - Lots of patches
 - Lots of exploits in wild (no patches for them)
- Solution?
 - Limit access to the network
 - Put firewalls across the perimeter of the network

Firewalls (contd...)

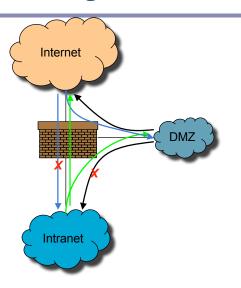
- Firewall inspects traffic through it
- Allows traffic specified in the policy
- Drops everything else
- Two Types
 - Packet Filters, Proxies

Packet Filters

- Packet filter selectively passes packets from one network interface to another
- Usually done within a router between external and internal networks
 - screening router
- Can be done by a dedicated network element
 - packet filtering bridge
 - harder to detect and attack than screening routers

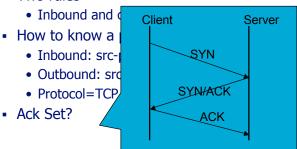
Packet Filters Contd.

- Data Available
 - IP source and destination addresses
 - Transport protocol (TCP, UDP, or ICMP)
 - TCP/UDP source and destination ports
 - ICMP message type
 - Packet options (Fragment Size etc.)
- Actions Available
 - Allow the packet to go through
 - Drop the packet (Notify Sender/Drop Silently)
 - Alter the packet (NAT?)
 - Log information about the packet


Packet Filters Contd.

- Example filters
 - Block all packets from outside except for SMTP servers
 - Block all traffic to a list of domains
 - Block all connections from a specified domain

Typical Firewall Configuration


- Internal hosts can access DMZ and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only

.

Sample Firewall Rule

- Allow SSH from external hosts to internal hosts
 - Two rules

Rule	Dir	Src Addr	Src Port	Dst Addr	Dst Port	Proto	Ack Set?	Action
SSH-1	In	Ext	> 1023	Int	22	TCP	Any	Allow
SSH-2	Out	Int	22	Ext	> 1023	TCP	Yes	Allow

Packet Filters

- Advantages
 - Transparent to application/user
 - Simple packet filters can be efficient
- Disadvantages
 - Very hard to configure the rules
 - Doesn't have enough information to take actions
 - Does port 22 always mean SSH?
 - Who is the user accessing the SSH?

Alternatives

- Stateful packet filters
- Proxy Firewalls
 - Two connections instead of one
 - Either at transport level
 - SOCKS proxy
 - Or at application level
 - HTTP proxy
- Requires applications (or dynamically linked libraries) to be modified to use the proxy