
Link Layer



Where we are in the Course

• Moving on up to the Link Layer!
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Scope of the Link Layer

• Concerns how to transfer messages over one or 
more connected links

• Messages are frames, of limited size
• Builds on the physical layer
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Frame







What are some challenges in the
link layer?

 What abstractions would we like to build?



Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet
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Framing
Delimiting start/end of frames



Topic

• The Physical layer gives us a stream of bits. How do 
we interpret it as a sequence of frames?
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…10110 …

Um?



Simple ideas?



Framing Methods

• We’ll look at:
• Byte count (motivation)

• Byte stuffing 
• Bit stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11
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Byte Count

• First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …
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Byte Count (2)

How well do you think it works?

CSE 461 University of Washington 14



Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame
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Byte Stuffing (2)

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC
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Byte Stuffing (3)

• Now any unescaped FLAG is the start/end of a frame
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Unstuffing

You see:

1. Solitary FLAG?

2. Solitary ESC?

3. ESC FLAG?

4. ESC ESC FLAG?

5. ESC ESC ESC FLAG?

6. ESC FLAG FLAG?



Unstuffing

You see:

1. Solitary FLAG? -> 

2. Solitary ESC? -> 

3. ESC FLAG? -> 

4. ESC ESC FLAG? -> 

5. ESC ESC ESC FLAG? -> 

6. ESC FLAG FLAG? -> 

Start or end of packet

Bad packet!

remove ESC and pass FLAG through

pass one ESC and then start of end of packet

pass ESC FLAG through

pass FLAG through then start of end of packet



Bit Stuffing

• Can stuff at the bit level too
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted 
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Bit Stuffing (2)

• Example:
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Transmitted bits
with stuffing

Data bits



Bit Stuffing (3)

• So how does it compare with byte stuffing?
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Transmitted bits
with stuffing

Data bits



Link Example: PPP over SONET

• PPP is Point-to-Point Protocol

• Widely used for link framing
• E.g., it is used to frame IP packets that are sent over SONET optical links
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Link Layer: Error detection 
and correction



Topic

• Some bits will be received in error due to noise. 
What can we do?

•Reliability is a concern that cuts across the layers
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Later

Detect errors with codes
Correct errors with codes
Retransmit lost frames



Problem – Noise may flip received 
bits 
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Signal
0 0 0 0

11 1

0

0 0 0 0

11 1

0

0 0 0 0

11 1

0

Slightly
Noisy

Very
noisy



• Ideas?



Approach – Add Redundancy 

• Error detection codes
•  Add check bits to the message bits to let some errors be 

detected

• Error correction codes
• Add more check bits to let some errors be corrected

• Key issue is now to structure the code to detect many 
errors with few check bits and modest computation
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• Ideas?



Motivating Example

• A simple code to handle errors:
• Send two copies! Error if different.

• How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?
   

CSE 461 University of Washington 35



Motivating Example (2)

• We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental errors (will look at secure 

hashes later)
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Using Error Codes

• Codeword consists of D data plus R check bits 
(=systematic block code)

• Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes (2)

• Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if 

R doesn’t match R’
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D R’

Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

• For D data bits, R check bits:

• Randomly chosen codeword is unlikely to be correct; 
overhead is low
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All
codewords

Correct
codewords
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R.W. Hamming (1915-1998)

• Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

• “If the computer can tell when an error has 
occurred, surely there is a way of telling where 
the error is so the computer can correct the error 
itself” - Hamming

Source: IEEE GHN, © 2009 IEEE



Hamming Distance

• Distance is the number of bit flips needed to change 
D1 to D2

• Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-
strings) that cannot be detected
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Hamming Distance (2)

• Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected

• Error correction:
• For a coding of distance 2d+1, up to d errors can always be 

corrected by mapping to the closest valid codeword
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Simple Error Detection – Parity Bit

• Take D data bits, add 1 check bit that is the sum of 
the D bits

• Sum is modulo 2 or XOR
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Parity Bit (2)

• How well does parity work?
• What is the distance of the code?
• How many errors will it detect/correct?
 

• What about larger errors?
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Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

• Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

• Sum is defined in 1s complement arithmetic (must 
add back carries)

• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------ 
2ddf0 

ddf0 
+    2 
------ 

ddf2 

220d 
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Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------ 
2ddf1 

ddf1 
+    2 
------ 

ddf3 

220c 

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum
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Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------ 
2fffd 

 
fffd 

+    2 
------ 

ffff 

   0000 
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Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------ 
2fffd 

 
fffd 

+    2 
------ 

ffff 

   0000 



Internet Checksum (6)

• How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?
 

• What about larger errors?
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Cyclic Redundancy Check (CRC)

• Even stronger protection
• Given n data bits, generate k check bits such that the n+k 

bits are evenly divisible by a generator C 

• Example with numbers:
• n = 302, k = one digit, C = 3
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CRCs (2)

• The catch:
• It’s based on mathematics of finite fields, in which “numbers” represent 

polynomials

• e.g, 10011010 is x7 + x4 + x3 + x1 

• What this means:
• We work with binary values and operate using modulo 2 arithmetic
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CRCs (3)

• Send Procedure:

1. Extend the n data bits with k zeros

2. Divide by the generator value C

3. Keep remainder, ignore quotient

4. Adjust k check bits by remainder

• Receive Procedure:

1. Divide and check for zero remainder
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CRCs (4)
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Data bits:
1101011111

Check bits:
C(x)=x4+x1+1

C = 10011
k = 4 

1 0 0 1 1 1  1  0  1  0  1  1  1  1  1 





CRCs (6)

• Protection depend on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

 

• Properties:
• HD=4, detects up to triple bit errors
• Also odd number of errors 
• And bursts of up to k bits in error
• Not vulnerable to systematic errors like checksums
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Why Error Correction is Hard

• If we had reliable check bits we could use them to 
narrow down  the position of the error

• Then correction would be easy

• But error could be in the check bits as well as the 
data bits!

• Data might even be correct 
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Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance 
of at least 3

• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them 
by mapping an error to the closest valid codeword

• Works for d errors if HD ≥ 2d + 1
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Intuition (2)

• Visualization of code:
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A

B

Valid
codeword

Error
codeword



Intuition (3)

• Visualization of code:
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A

B

Valid
codeword

Error
codeword

Single 
bit error
from A

Three bit 
errors to 
get to B



Hamming Code

• Gives a method for constructing a code with a 
distance of 3

• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting 

with position 1
• Check bit in position p is parity of positions with a p term 

in their values

• Plus an easy way to correct [soon]
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Hamming Code (2)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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                   _  _  _  _  _  _  _
1   2   3   4   5   6   7



Hamming Code (3)

• Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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                  0  1  0  0  1  0  1

p1= 0+1+1 = 0,  p2= 0+0+1 = 1,  p4= 1+0+1 = 0

1   2   3   4   5   6   7



Hamming Code (4)

• To decode:
• Recompute check bits (with parity sum including the 

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct
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Hamming Code (5)

• Example, continued
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              0  1  0  0  1  0  1

p1=                             p2= 

p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (6)

• Example, continued
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              0  1  0  0  1  0  1

p1= 0+0+1+1 = 0,   p2= 1+0+0+1 = 0,

p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1   2   3   4   5   6   7



Hamming Code (7)

• Example, continued
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              0  1  0  0  1  1  1

p1=                             p2= 

p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (8)

• Example, continued
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              0  1  0  0  1  1  1

p1= 0+0+1+1 = 0,   p2= 1+0+1+1 = 1,

p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1   2   3   4   5   6   7



Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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                  0  1  0  0  1  1  1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1

1   2   3   4   5   6   7



Hamming Code (3)

• Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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                  0  1  0  0  1  1  1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1

1   2   3   4   5   6   7
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Other Codes (2) – Turbo Codes 
• Turbo Codes

• Evolution of convolutional codes
• Sends multiple sets of parity bits with payload
• Decodes sets together (e.g. Sudoku)
• Used in 3G and 4G cellular technologies

• Invented and patented by Claude Berrou
• Professor at École Nationale Supérieure des 

Télécommunications de Bretagne
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Other Codes (3) – LDPC 
• Low Density Parity Check (§3.2.3)

• LDPC based on sparse matrices
• Decoded iteratively using a belief 

propagation algorithm

• Invented by Robert Gallager in  1963 
as part of his PhD thesis

• Promptly forgotten until 1996 … 

Source: IEEE GHN, © 2009 IEEE



Detection vs. Correction

• Which is better will depend on the pattern of errors. 
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
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Detection vs. Correction

• Which is better will depend on the pattern of errors. 
For example:

• 1000 bit messages with a bit error rate (BER) of 1 in 10000

• Which has less overhead?
• It still depends! We need to know more about the errors
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Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction: 
• Need ~10 check bits per message
• Overhead:

Error detection: 
• Need ~1 check bits per message plus 1000 bit retransmission 

• Overhead:
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Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction: 
• Need >>100 check bits per message
• Overhead:

Error detection: 
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time

• Overhead:
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Detection vs. Correction (4)

• Error correction: 
• Needed when errors are expected

• Or when no time for retransmission

• Error detection: 
• More efficient when errors are not expected
• And when errors are large when they do occur
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Error Correction in Practice

• Heavily used in physical layer
• LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for 
residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)
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