
UDP header revisited

Application data

TCP

TCP

Consists of 3 primary phases:
• Connection Establishment (Setup)
• Sliding Windows/Flow Control
• Connection Release (Teardown)

Connection Establishment

•Both sender and receiver must be ready before we
start the transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

•This is signaling
• It sets up state at the endpoints
• Like “dialing” for a telephone call

CSE 461 University of Washington 4

CSE 461 University of Washington 5

Three-Way Handshake
• Used in TCP; opens connection for

data in both directions
• Each side probes the other with a

fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment
• Echo on an ACKnowledge segment

• Chosen to be robust even against
delayed duplicates

Active party
(client)

Passive party
(server)

CSE 461 University of Washington 6

Three-Way Handshake (2)

•Three steps:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)
• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

•Sequence and ack numbers carried
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CSE 461 University of Washington 7

Three-Way Handshake (3)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)

CSE 461 University of Washington 8

Three-Way Handshake (4)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

•Connection will be cleanly
rejected on both sides J

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X
XREJECT

REJECT

TCP Connection State Machine

•Captures the states ([]) and transitions (->)
• A/B means event A triggers the transition, with action B

Both parties
run instances
of this state

machine

TCP Connections (2)

• Follow the path of the client:

TCP Connections (3)

• And the path of the server:

TCP Connections (4)

• Again, with states …

CSE 461 University of Washington 12

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CLOSEDCLOSED

TCP Connections (5)

•Finite state machines are a useful tool to specify and
check the handling of all cases that may occur

•TCP allows for simultaneous open
• i.e., both sides open instead of the client-server pattern
• Try at home to confirm it works J

CSE 461 University of Washington 13

Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides

shutdown independently

CSE 461 University of Washington 14

CSE 461 University of Washington 15

TCP Connection Release

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

CSE 461 University of Washington 16

TCP Connection Release (2)

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

TCP Connection State Machine

CSE 461 University of Washington 17

Both parties
run instances
of this state

machine

TCP Release

•Follow the active party

CSE 461 University of Washington 18

TCP Release (2)

•Follow the passive party

CSE 461 University of Washington 19

TCP Release (3)

•Again, with states …

CSE 461 University of Washington 20

1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACKFIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?

CSE 461 University of Washington 21

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent

for an orderly close
• Could otherwise interfere with a subsequent connection

CSE 461 University of Washington 22

Flow Control

Flow control goal

Match transmission speed to reception capacity
• Otherwise data will be lost

ARQ: Automatic repeat query

•ARQ with one message at a time is Stop-and-Wait

CSE 461 University of Washington 25

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Limitation of Stop-and-Wait

• It allows only a single message to be outstanding
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with longer delays

CSE 461 University of Washington 26

Limitation of Stop-and-Wait (2)

•Example: B=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec?
• 10

• Usage efficiency if packets are 10kb?
• (10,000 x 10) / (1 x 106) = 10%

•What is the efficiency if B=10 Mbps?
• 1%

CSE 461 University of Washington 27

Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance
• Need W=2BD to fill network path

CSE 461 University of Washington 28

Sliding Window (2)

What W will use the network capacity with 10kb packets?

• Ex: B=1 Mbps, D = 50 ms
• 2BD = 2 x 106 x 50/1000 = 100 Kb
• W = 100 kb/10 = 10 packets

• Ex: What if B=10 Mbps?
• W = 100 packets

CSE 461 University of Washington 29

Sliding Window Protocol

•Many variations, depending on how buffers,
acknowledgements, and retransmissions are
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance

CSE 461 University of Washington 30

Sender Sliding Window

•Sender buffers up to W segments until they are
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W

CSE 461 University of Washington 31

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

Sender Sliding Window (2)

•Transport accepts another segment of data from the
Application ...
• Transport sends it (LFS–LAR à 5)

CSE 461 University of Washington 32

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Sent

seq. number

Sliding
Window

LFS

Sender Sliding Window (3)

•Next higher ACK arrives from peer…
•Window advances, buffer is freed
• LFS–LAR à 4 (can send one more)

CSE 461 University of Washington 33

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

LFS

Receiver Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update

LAS, send ACK
• Otherwise discard (as out of order)

CSE 461 University of Washington 34

Receiver Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments
• Ex: I got everything up to 42 (LAS), and got 44, 45

• TCP uses a selective repeat design; we’ll see the details later

CSE 461 University of Washington 35

Receiver Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W]
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless

CSE 461 University of Washington 36

5

Sender Sliding Window – Selective Repeat

•Keep normal sliding window
• If out-of-order ACK arrives
• Send LAR+1 again!

CSE 461 University of Washington 37

.. 5 6 7 .. 2 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..

5

Sender Sliding Window – Selective Repeat (2)

•Keep normal sliding window
• If in-order ACK arrives
•Move window and LAR, send more messages

CSE 461 University of Washington 38

.. 5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..

In-order ack arrives…

seq. number

Sliding
Window

LFS

....
Now Available

Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets starting at LAR+1

•Selective Repeat uses a timer per unacked segment
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments

CSE 461 University of Washington 39

Sequence Numbers

Need more than 0/1 for Stop-and-Wait … but how many?
• For Selective Repeat: 2W seq numbers
• W for packets, plus W for earlier acks

• For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1
• E.g., N=8: …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 40

Sequence Time Plot

CSE 461 University of Washington 41

Time

Se
q.

 N
um

be
r

Acks
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)

Sequence Time Plot (2)

CSE 461 University of Washington 42

Time

Se
q.

 N
um

be
r

Go-Back-N scenario

Sequence Time Plot (3)

CSE 461 University of Washington 43

Time

Se
q.

 N
um

be
r Loss

Timeout

Retransmissions

