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TCP



TCP

Consists of 3 primary phases:
• Connection Establishment (Setup)
• Sliding Windows/Flow Control
• Connection Release (Teardown)



Connection Establishment

•Both sender and receiver must be ready before we 
start the transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

•This is signaling
• It sets up state at the endpoints
• Like “dialing” for a telephone call

CSE 461 University of Washington 4



CSE 461 University of Washington 5

Three-Way Handshake
• Used in TCP; opens connection for 

data in both directions
• Each side probes the other with a 

fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment
• Echo on an ACKnowledge segment

• Chosen to be robust even against 
delayed duplicates

Active party
(client)

Passive party
(server)
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Three-Way Handshake (2)

•Three steps:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)
• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

•Sequence and ack numbers carried 
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time
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Three-Way Handshake (3)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)
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Three-Way Handshake (4)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
• Improbable, but anyhow …

•Connection will be cleanly 
rejected on both sides J

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X
XREJECT

REJECT



TCP Connection State Machine

•Captures the states ([]) and transitions (->)
• A/B means event A triggers the transition, with action B

Both parties 
run instances 
of this state 

machine



TCP Connections (2)

• Follow the path of the client: 



TCP Connections (3)

• And the path of the server: 



TCP Connections (4)

• Again, with states …
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LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CLOSEDCLOSED



TCP Connections (5)

•Finite state machines are a useful tool to specify and 
check the handling of all cases that may occur

•TCP allows for simultaneous open
• i.e., both sides open instead of the client-server pattern
• Try at home to confirm it works J
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Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides 

shutdown independently
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TCP Connection Release

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction 
of data transfer

Active party Passive party
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TCP Connection Release (2)

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction 
of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)



TCP Connection State Machine
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Both parties 
run instances 
of this state 

machine



TCP Release

•Follow the active party
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TCP Release (2)

•Follow the passive party
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TCP Release (3)

•Again, with states …
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1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACKFIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED



TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
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TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent 

for an orderly close
• Could otherwise interfere with a subsequent connection
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Flow Control



Flow control goal

Match transmission speed to reception capacity
• Otherwise data will be lost



ARQ: Automatic repeat query

•ARQ with one message at a time is Stop-and-Wait
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Limitation of Stop-and-Wait

• It allows only a single message to be outstanding 
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with longer delays
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Limitation of Stop-and-Wait (2)

•Example: B=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec? 
• 10

• Usage efficiency if packets are 10kb?
• (10,000 x 10) / (1 x 106) = 10% 

•What is the efficiency if B=10 Mbps?
• 1%
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Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance 
• Need W=2BD to fill network path
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Sliding Window (2)

What W will use the network capacity with 10kb packets?

• Ex: B=1 Mbps, D = 50 ms
• 2BD = 2 x 106 x 50/1000 = 100 Kb
• W = 100 kb/10 = 10 packets 

• Ex: What if B=10 Mbps?
• W = 100 packets
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Sliding Window Protocol

•Many variations, depending on how buffers, 
acknowledgements, and retransmissions are 
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance
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Sender Sliding Window 

•Sender buffers up to W segments until they are 
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W 
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.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window



Sender Sliding Window (2) 

•Transport accepts another segment of data from the 
Application ...
• Transport sends it (LFS–LAR à 5)
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.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Sent

seq. number

Sliding
Window

LFS



Sender Sliding Window (3) 

•Next higher ACK arrives from peer…
•Window advances, buffer is freed 
• LFS–LAR à 4 (can send one more) 
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.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

LFS



Receiver Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the 
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update 

LAS, send ACK
• Otherwise discard (as out of order)
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Receiver Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments
• Ex: I got everything up to 42 (LAS), and got 44, 45

• TCP uses a selective repeat design; we’ll see the details later
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Receiver Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W] 
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless
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5

Sender Sliding Window – Selective Repeat 

•Keep normal sliding window
• If out-of-order ACK arrives
• Send LAR+1 again!
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.. 5 6 7 .. 2 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..



5

Sender Sliding Window – Selective Repeat (2) 

•Keep normal sliding window
• If in-order ACK arrives
•Move window and LAR, send more messages
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.. 5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..

In-order ack arrives…

seq. number

Sliding
Window

LFS

....
Now Available



Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets  starting at LAR+1

•Selective Repeat uses a timer per unacked segment 
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments
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Sequence Numbers

Need more than 0/1 for Stop-and-Wait … but how many?
• For Selective Repeat: 2W seq numbers
• W for packets, plus W for earlier acks

• For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that 
wraps around at 2N—1 
• E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 40



Sequence Time Plot
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Sequence Time Plot (2)
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Sequence Time Plot (3)
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