UDP header revisited

o 1 2 3/ 4 5 6,7 8 9 10 11 12 13 14 /15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL DSCP ECN Total Length
Identification Flags Fragment Offset
Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

Source port Destination port

Length Checksum

Application data

TCP

TCP

Consists of 3 primary phases:
* Connection Establishment (Setup)
* Sliding Windows/Flow Control
e Connection Release (Teardown)

Connection Establishment

* Both sender and receiver must be ready before we
start the transfer of data

* Need to agree on a set of parameters
e e.g., the Maximum Segment Size (MSS)

*This is sighaling
* |t sets up state at the endpoints
* Like “dialing” for a telephone call

Three-Way Handshake

* Used in TCP; opens connection for
data in both directions

* Each side probes the other with a
fresh Initial Sequence Number (ISN)
* Sends on a SYNchronize segment
* Echo on an ACKnowledge segment

* Chosen to be robust even against
delayed duplicates

Active party
(client)

Passive party
(server)

Three-Way Handshake (2)

(] Th ree Ste pS: Active party Passive party
. :
* Client sends SYN(x) (client) (server)

* Server replies with SYN(y)ACK(x+1) %)
* Client replies with ACK(y+1)

Q’Y AC\(;)(—\' 1\

* SYNs are retransmitted if lost YN (SE

* Sequence and ack numbers carried
on further segments lﬂme

Three-Way Handshake (3)

* Suppose delayed, duplicate Active party Passive party
copies of the SYN and ACK arrive ‘70" (server)

at the server! %%
* Improbable, but anyhow ...
M
ACK:Z.,.l)

Three-Way Handshake (4)

o SUppOSE delayed, duplicate Active party Passive party
. . lient
copies of the SYN and ACK arrive 'Fe0Y iserver)
at the server! SYN (sEqey
* Improbable, but anyhow ... cxer)
GYN (SEO7Y
* Connection will be cleanly X s
: - REJECT FQ=x+1,
rejected on both sides © ACK=zr1— X
REJECT

[

TCP Connection State Machine

e Captures the states ([]) and transitions (->)
* A/B means event A triggers the transition, with action B

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED [T ~
— CLOSE/-)
LISTEN/~ | | CLOSE/-
4
: SYN/SYN + ACK
Both parties (Step 2 /6 the 3-way handsnake) | LISTEN
run instances '
! RST/- JAN SEND/SYN !
of this state o S i A
=
. R.C\',D SYN/SYN + ACK (simultaneous open) L]
machine i
E (Data transfer state)
N ACK- . ~| ESTABLISHED |-—SYN * ACKIACK

(Step 3 of the 3-way handshake)

TCP Connections (2)

* Follow the path of the client:

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED |_ \
. CLOSE/- N
LISTEN/- CLOSE/-
SYN/SYN + ACK
(Step 2 ,*Of the 3-way handshake) | LISTEN
' ‘
RST/-) L SEND/SYN
SYN - SYN
SCND SYN/SYN + ACK (simultaneous open) SENL

(Data transfer state)

. ACK/— SYN + ACK/ACK
""""""""" =| ESTABLISHED |- (Step 3 of the 3-way handshake)

P L L L L L L

TCP Connections (3)

* And the path of the server:

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED |_ \
‘ CLOSE/~ N
LISTEN/- CLOSE/-
SYN/SYN + ACK
(Step 2 ,*Of the 3-way handshake) | LISTEN
' ‘
RST/-) L SEND/SYN
SYN - SYN
SCND SYN/SYN + ACK (simultaneous open) SENL

(Data transfer state)

. ACK/— SYN + ACK/ACK
""""""""" =| ESTABLISHED |- (Step 3 of the 3-way handshake)

P L L L L L L

TCP Connections (4)

* Again, with states ...

Active party (client)

CLOSED
SYN_SENT

ESTABLISHED

S

Passive party (server)

CLOSED
LISTEN

SYN_RCVD

ESTABLISHED

TCP Connections (5)

* Finite state machines are a useful tool to specify and
check the handling of all cases that may occur

* TCP allows for simultaneous open
* j.e., both sides open instead of the client-server pattern
* Try at home to confirm it works ©

Connection Release

* Orderly release by both parties when done
* Delivers all pending data and “hangs up”
* Cleans up state in sender and receiver

* Key problem is to provide reliability while releasing

* TCP uses a “symmetric” close in which both sides
shutdown independently

TCP Connection Release

e TWO Ste S Active party Passive party

* Active sends FIN(x), passive ACKs
* Passive sends FIN(y), active ACKs
* FINs are retransmitted if lost

* Each FIN/ACK closes one direction
of data transfer

TCP Connection Release (2)

e TWO Ste S Active party Passive party
* Active sends FIN(x), passive ACKs

FIN (SEQ
* Passive sends FIN(y), active ACKs W}

* FINs are retransmitted if lost (SEORY ek

V ACK=X+ 1\

\S\:—OF/
* Each FIN/ACK closes one direction V

of data transfer BEQ=x+1, Ackey

TCP Connection State Machine

{ ESTABLISHED
|
)
|
CLOSE/FIN J FINJACK
((Active close) (Passiv~e\, close)
== Se==ss=messmems = _—— _—— - 1 r =
| I]
. | '
I FINJACK
Both parties | — N ooE
. WAIT 1 CLOSING WAIT
run instances) ,
. ACK/—- ACK/- I | CLOSE/FIN
of this state | e Ak]] ;
+
machine Jo ~ | oME | oK
P f |
WAIT 2 FINACK WAIT i .
i _] . e
(Timeout/) :
y 1
CLOSED |ecccmcee- e /!

(Go back to start)

CSE 461 University of Washington 17

———— ———— — ————— — ——— — —

TCP Release

* Follow the active party

| ESTABLISHED

CLOSE/FIN FINJACK
(Active close) (Passive\sclose)
i'- s 1 r :— =
i FIN FINACK CL(g)SE
WAIT 1 CLOSING WAIT
i
ACK/~ ACK/~ i CLOSE/FIN
I
\] I !
FIN + ACK/IACK
FIN - TIME L:&T
- f
WAIT 2 FINJACK WAIT .
- i L o
(Timeout/) 1:
/ I
CLOSED |=-cncmmn- S 4
(Go back to start)
CSE 461 University of Washington 18

TCP Release (2)

* Follow the passive party

| ESTABLISHED

i

CLOSE/FIN FIN/ACK
(Active close) (Passive\sclose)
i'--_-—-__' - - - 1 r :‘ =
| FIN FINACK CL(!)SE
WAIT 1 CLOSING WAIT
i
ACK/- ACK/~- i CLOSE/FIN
I |
\] I ! I
FIN + ACK/IACK
FIN - TIME L,(‘éf
- f
WAIT 2 FINJACK WAIT .
~ ‘ I N |
(Timeout/) !
/ I
CLOSED |=-mmmmmm-e it S /!
(Go back to start)
CSE 461 University of Washington 19

TCP Release (3)

* Again, with states ...

ESTABLISHED
FIN._WAIT 1

FIN_WAIT 2

TIME_WAIT

(timeout)
CLOSED

Active party

F

Passive party

IN (SEQ:x)

\

K:x-\— 1\

&SEQ=V1 A C

ESTABLISHED

CLOSE_WAIT

LAST ACK

CLOSED

TIME_WAIT State

* Wait a long time after sending all segments and
before completing the close
* Two times the maximum segment lifetime of 60 seconds

e Why?

TIME_WAIT State

* Wait a long time after sending all segments and
before completing the close
* Two times the maximum segment lifetime of 60 seconds

e Why?
* ACK might have been lost, in which case FIN will be resent
for an orderly close

* Could otherwise interfere with a subsequent connection

Flow Control

Flow control goal

Match transmission speed to reception capacity
e Otherwise data will be lost

ARQ: Automatic repeat query
* ARQ with one message at a time is Stop-and-Wait

Sender Receiver
Frame O

\

Timeout ACK 0 Time

ACK 1

Limitation of Stop-and-Wait

* |t allows only a single message to be outstanding
from the sender:

* Fine for LAN (only one frame fits in network anyhow)
* Not efficient for network paths with longer delays

[1]

]

Limitation of Stop-and-Wait (2)

* Example: B=1 Mbps, D =50 ms
* RTT (Round Trip Time) = 2D = 100 ms
 How many packets/sec?
10
* Usage efficiency if packets are 10kb?
* (10,000 x 10) / (1 x 10°) = 10%

* What is the efficiency if B=10 Mbps?
* 1%

Sliding Window

* Generalization of stop-and-wait

* Allows W packets to be outstanding
e Can send W packets per RTT (=2D)

R

* Pipelining improves performance
* Need W=2BD to fill network path

Sliding Window (2)
What W will use the network capacity with 10kb packets?

* Ex: B=1 Mbps, D =50 ms
*« 2BD =2 x 10° x 50/1000 = 100 Kb
* W =100 kb/10 = 10 packets

* Ex: What if B=10 Mbps?
* W =100 packets

Sliding Window Protocol

* Many variations, depending on how buffers,

acknowledgements, and retransmissions are
handled

* Go-Back-N
e Simplest version, can be inefficient

*Selective Repeat
* More complex, better performance

Sender Sliding Window

* Sender buffers up to W segments until they are
acknowledged

e L FS=LAST FRAME SENT, LAR=LAST ACK REC'D
e Sends while LFS— LAR<W

Sliding W=5 _
Window /Avallable
Ackedl Unacked Unavailable | ..
| ! ,

LAR LFS seq. number

Sender Sliding Window (2)

* Transport accepts another segment of data from the
Application ...
* Transport sends it (LFS—LAR —> 5)

Sliding W=5
Window /Sent
Ackedl WUnacked Unavailable | ..
! | X

LAR LFS seq. number

Sender Sliding Window (3)

* Next higher ACK arrives from peer...

 Window advances, buffer is freed
* LFS—LAR = 4 (can send one more)

le.

N

Sliding W=5 .
Window /Avallable
Ackedl Unacke Unavai‘lat
T T ,
LAR LFS seq. number

Receiver Sliding Window — Go-Back-N

* Receiver keeps only a single packet buffer for the
next segment
e State variable, LAS = LAST ACK SENT

* On receive:

* If seq. number is LAS+1, accept and pass it to app, update
LAS, send ACK

e Otherwise discard (as out of order)

Receiver Sliding Window — Selective Repeat

* Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

* ACK conveys highest in-order segment, plus hints about out-
of-order segments

* Ex: | got everything up to 42 (LAS), and got 44, 45

* TCP uses a selective repeat design; we’ll see the details later

Receiver Sliding Window — Selective Repeat (2)

* Buffers W segments, keeps state variable LAS = LAsT
ACK SENT

*On receive:
* Buffer segments [LAS+1, LAS+W]
* Send app in-order segments from LAS+1, and update LAS
* Send ACK for LAS regardless

Sender Sliding Window — Selective Repeat

* Keep normal sliding window

 |f out-of-order ACK arrives
e Send LAR+1 again!

W=5
SI.Idmg Ack Arrives Out of Order!
Window
Ackedl Unacked | \Unavailable.
! |

N

LAR LFS seq. number

Sender Sliding Window — Selective Repeat (2)

* Keep normal sliding window

* If in-order ACK arrives

* Move window and LAR, send more messages
W=5

S!iding In-order ack arrives...
Window / , Now Available
Ackedl Unacked | | “
! X
LAR LFS seq. number

Sliding Window — Retransmissions

* Go-Back-N uses a single timer to detect losses
* On timeout, resends buffered packets starting at LAR+1

* Selective Repeat uses a timer per unacked segment
to detect losses

* On timeout for segment, resend it
* Hope to resend fewer segments

Sequence Numbers

Need more than 0/1 for Stop-and-Wait ... but how many?
* For Selective Repeat: 2W seq numbers
* W for packets, plus W for earlier acks
* For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1

*E.g., N=8: .., 253,254, 255,0,1, 2,3, ..

Sequence Time Plot

Transmissions

(at Sender) \

\ Acks

(at Receiver)

Seq. Number

Delay (=RTT/2)

Time

N
7

Seq. Number

Sequence Time Plot (2)

Go-Back-N scenario

Time

v

Sequence Time Plot (3)

Retransm|55|ons

\@ /

Timeout

Seq. Number

Time

v

