Web Security

What should be the Threat Model for the Web?

Goal and Threat Model

- Much can go wrong on the web!
 - Clients encounter malicious content
 - Web servers are target of break-ins
 - Fake content/servers trick users
 - Data sent over network is stolen ...

Goal and Threat Model (2)

- Goal of HTTPS is to secure HTTP
- We focus on network threats:
 - 1. Eavesdropping client/server traffic
 - 2. Tampering with client/server traffic
 - 3. Impersonating web servers

HTTPS Context

- HTTPS (HTTP Secure) is an add-on
 - Means HTTP over SSL/TLS
 - SSL (Secure Sockets Layer) precedes TLS (Transport Layer Security)

HTTPS Context (2)

- SSL came out of Netscape
 - SSL2 (flawed) made public in '95
 - SSL3 fixed flaws in '96
- TLS is the open standard
 - TLS 1.0 in '99, 1.1 in '06, 1.2 in '08
- Motivated by secure web commerce
 - Slow adoption, now widespread use
 - Can be used by any app, not just HTTP

SSL/TLS Operation

- Protocol provides:
 - 1. Verification of identity of server (and optionally client)
 - Message exchange between the two with confidentiality, integrity, authenticity and freshness
- Consists of authentication phase (that sets up encryption) followed by data transfer phase

SSL/TLS Authentication

- Must allow clients to securely connect to servers not used before
 - Client must authenticate server
 - Server typically doesn't identify client
- Uses public key authentication
 - But how does client get server's key?
 - With <u>certificates</u> »

Certificates

- A certificate binds pubkey to identity, e.g., domain
 - Distributes public keys when signed by a party you trust
 - Commonly in a format called X.509

PKI (Public Key Infrastructure)

- Adds hierarchy to certificates to let parties issue
 - Issuing parties are called CAs (Certificate Authorities)

PKI (2)

 Need public key of PKI root and trust in servers on path to verify a public key of website ABC

- Browser has Root's public key
- {RA1's key is X} signed Root
- {CA1's key is Y} signed RA1
- {ABC's key is Z} signed CA1

Root

PKI (3)

- Browser/OS has public keys of the trusted roots of PKI
 - >100 root certificates!
 - Inspect your web browser

Certificate for wikipedia.org issued by DigiCert

PKI (4)

- Real-world complication:
 - Public keys may be compromised
 - Certificates must then be revoked
- PKI includes a CRL (Certificate Revocation List)
 - Browsers use to weed out bad keys

TLS handshake

What can attacker (in the network) still learn from an HTTPS connection?

• "Metadata"

Takeaways

- SSL/TLS is a secure transport
 - For HTTPS and more, with the usual confidentiality, integrity / authenticity
 - Very widely used today
- Client authenticates web server
 - Done with a PKI and certificates
 - Major area of complexity and risk
- "Metadata" leaks
 - Use other tools (Tor or VPN) if you want to hide that