
CSE 466 - Winter 2006 Communication 1

Communication methods
Communication methods

Media and signalling conventions used to transmit data between
digital devices
Different physical layers methods including:

wires, radio frequency (RF), optical (IR)
Different encoding schemes including:

amplitude, frequency, and pulse-width modulation

Binary Phase Shift Keying (BPSK)

Frequency Shift Keying (FSK)

On-Off Keying (OOK)

No encoding (Baseband)

WaveformModulation Technique

CSE 466 - Winter 2006 Communication 2

Communication methods

Dimensions to consider
bandwidth – number of wires – serial/parallel
speed – bits/bytes/words per second
timing methodology – synchronous or asynchronous
number of destinations/sources
arbitration scheme – daisy-chain, centralized, distributed
protocols – provide some guarantees as to correct communication

CSE 466 - Winter 2006 Communication 3

Bandwidth

Serial
Single wire or channel to trasmit information one bit at a time
Requires synchronization between sender and receiver
Sometimes includes extra wires for clock and/or handshaking
Good for inexpensive connections (e.g., terminals)
Good for long-distance connections (e.g., LANs)
Examples: RS-232, Ethernet, I2C, IrDA, USB, Firewire, Bluetooth

Parallel
Multiple wires to transmit information one byte or word at a time
Good for high-bandwidth requirements (CPU to disk)
More expensive wiring/connectors/current requirements
Examples: SCSI-2, PCI bus (PC), PCMCIA (Compact Flash)

Issues
Encoding, data transfer rates, cost of connectors and wires, modularity,
error detection and/or correction

CSE 466 - Winter 2006 Communication 4

Speed

Serial
low-speed, cheap connections

RS-232 1K–20K bits/sec, copper wire
medium-speed efficient connections

I2C 10K-400K bits/sec, board traces
IrDA 9.6K-4M bits/sec, line-of-sight, 0.5-6.0m

high-speed, expensive connections
USB 1.5M bytes/sec, USB2 60M bytes/sec
Ethernet 1.5M-1G bits/sec, twisted-pair or co-axial
Firewire 12.5-50M bytes/sec

Parallel
low-speed, not too wide

SCSI-2 10M bytes/sec, 8 bits wide
PCI bus, 250M bytes/sec, 32 bits wide
PCMCIA (CF+), 9-10M bytes/sec, 16 bits wide

high-speed, very wide – memory systems in large multi-processors
200M-2G bytes/sec, 128-256 bits wide

CSE 466 - Winter 2006 Communication 5

Speed

Issues
length of the wires (attenuation, noise, capacitance)
connectors (conductors and/or transducers)
environment (RF/IR interference, noise)
current switching (spikes on supply voltages)
number and types of wires (cost of connectors, cross-talk)
flow-control (if communicating device can’t keep up)

CSE 466 - Winter 2006 Communication 6

Timing methodology

Asynchronous
less wires (no clock)
no skew concerns
synchronization overhead
appropriate for loosely-coupled systems (CPU and peripherals)
common in serial schemes

Synchronous
clock wires and skew concerns
no synchronization overhead
can be high-speed if delays are small and can be controlled
appropriate for tightly-couple systems (CPU and memory/disk)
common in parallel schemes

CSE 466 - Winter 2006 Communication 7

Timing methodology

Issues
clock period and wire delay
synchronization and skew
encoding of timing and data information
handshaking
flow-control
power consumption

CSE 466 - Winter 2006 Communication 8

Number of devices communicating

Single source – single destination
point-to-point
cheap connections, no tri-stating necessary

Single source – multiple destination
fanout limitations
addressing scheme to direct data to one destination

Multiple source – multiple destination
arbitration between senders
tri-stating capability is necessary
collision detection
addressing scheme
priority scheme
fairness considerations

CSE 466 - Winter 2006 Communication 9

Arbitration schemes
Daisy-chain or token passing

devices either act or pass to next
fixed priority order
as many wires as devices
fairness issues

Centralized
request to central arbiter
central arbiter implements priority scheme
wires from/to each device can be costly
can be dynamically changing priority/fairness

Distributed
no central arbiter
common set of wires (or ether) observed by all devices
fixed priority/fairness scheme

CSE 466 - Winter 2006 Communication 10

Serial case studies

RS-232 (IEEE standard)
serial protocol for point-to-point, low-cost, low-speed applications for PCs

I2C (Philips)
up to 400Kbits/sec, serial bus for connecting multiple components

Ethernet (popularized by Xerox)
most popular local area network protocol with distributed arbitration

IrDA (Infrared Data Association)
up to 115kbps wireless serial (Fast IrDA up to 4Mbs)

Firewire (Apple – now IEEE1394)
12.5-50Mbytes/sec, consumer electronics (video cameras, TVs, audio, etc.)

SPI (Motorola)
10Mbits/sec, commonly used for microcontroller to peripheral connections

USB (Intel – followed by USB-2)
12-480Mbits/sec, isochronous transfer, desktop devices

Bluetooth (Ericsson – cable replacement)
700Kbits/sec, multiple portable devices, special support for audio

CSE 466 - Winter 2006 Communication 11

RS-232 (standard serial line)

Point-to-point, full-duplex
Synchronous or asynchronous
Flow control
Variable baud (bit) rates
Cheap connections (low-quality and few wires)
Variations: parity bit; 1, 1.5, or 2 stop bits

start
bit

8 data
bits

parity
bit

stop
bit

CSE 466 - Winter 2006 Communication 12

all wires active low

"0" = -12v, "1" = 12v

special driver chips that
generate ±12v from 5v

RS-232 wires

TxD – transmit data
TxC – transmit clock
RTS – request to send
CTS – clear to send

RxD – receive data
RxC – receive clock
DSR – data set ready
DTR – data terminal ready

Ground

CSE 466 - Winter 2006 Communication 13

Transfer modes

Synchronous
clock signal wire is used by both receiver and sender to sample data

Asynchronous
no clock signal in common
data must be oversampled (16x is typical) to find bit boundaries

Flow control
handshaking signals to control rate of transfer

CSE 466 - Winter 2006 Communication 14

+Vcc

device
1

device
2

device
n

SCL

SDA

Inter-Integrated Circuit Bus (I2C)

Modular connections on a printed circuit board
Multi-point connections (needs addressing)
Synchronous transfer (but adapts to slowest device)
Similar to Controller Area Network (CAN) protocol
used in automotive applications
Similar to TWI (Two-Wire Interface) on ATmegas

CSE 466 - Winter 2006 Communication 15

SDA

SCL

START STOP

Serial data format

SDA going low while SCL high signals start of data
SDA going high while SCL high signals end of data
SDA can change when SCL low
SCL high (after start and before end) signals that a data bit can be read

CSE 466 - Winter 2006 Communication 16

SDA

SCL

1 3 4 5 6 7 8 ack2

Byte transfer

Byte followed by a 1 bit acknowledge from receiver
Open-collector wires

sender allows SDA to rise
receiver pulls low to acknowledge after 8 bits

Multi-byte transfers
first byte contains address of receiver
all devices check address to determine if following data is for them
second byte usually contains address of sender

CSE 466 - Winter 2006 Communication 17

clk 1

clk 2

SCL

Clock synchronization

Synchronous data transfer with variable speed devices
go as fast as the slowest device involved in transfer

Each device looks at the SCL line as an input as well as driving it
if clock stays low even when being driven high then another device needs
more time, so wait for it to finish before continuing
rising clock edges are synchronized

CSE 466 - Winter 2006 Communication 18

Arbitration

Devices can start transmitting at any time
wait until lines are both high for some minimum time
multiple devices may start together - clocks will be synchronized

All senders will think they are sending data
possibly slowed down by receiver (or another sender)
each sender keeps watching SDA - if ever different
(driving high, but its really low) then there is another driver
sender that detects difference gets off the bus and aborts message

Device priority given to devices with early 0s in their address
00….111 has higher priority than 01…111

CSE 466 - Winter 2006 Communication 19

Inter-Integrated Circuit Bus (I2C)

Supports data transfers from 0 to 400KHz
Philips (and others) provide many devices

microcontrollers with built-in interface
A/D and D/A converters
parallel I/O ports
memory modules
LCD drivers
real-time clock/calendars
DTMF decoders
frequency synthesizers
video/audio processors

CSE 466 - Winter 2006 Communication 20

Ethernet (Xerox local area network)

Local area network
up to 1024 stations
up to 2.8 km distance
10Mbits/sec serially on shielded co-axial cable
1.5Mbits/sec on twisted pair of copper pair

Developed by Xerox in late 70s
still most common LAN right now
being displaced by fiber-optics (can't handle video/audio rates or make
required service guarantees)

High-level protocols to ensure reliable data transmission
CSMA-CD: carrier sense multiple access with collision detection

CSE 466 - Winter 2006 Communication 21

Transmit
and

Receive
Electrical
Interface

Serial
Encode

and
Decode

Link
Management

Data
Encapsulation

Physical ChannelData-link Controller

Ethernet Controller Board Transceiver

Host-specific InterfaceTo
Host

Ethernet
Cable

Physical Layer

Data-link Layer

Transport Layer

Client Layer

parallel data serial data

Ethernet layered organization

Physical and data-link layers are our focus

CSE 466 - Winter 2006 Communication 22

0 1 0 1 0 01 1 0

Serial data format

Manchester encoding
signal and clock on one wire (XORed together)
"0" = low-going transition
"1" = high-going transition

Extra transitions between 00 and 11 need to be filtered
preamble at beginning of data packet contains alternating 1s and 0s
allows receivers to get used to where important transitions should be and
ignore extra ones (this is how synchronization is achieved)
preamble is 48 bits long: 10101. . . 01011

CSE 466 - Winter 2006 Communication 23

preamble (6 bytes)

destination address (6 bytes)

source address (6 bytes)

type (2 bytes)

data (46-1500 bytes)

checksum (4 bytes) compute from data

Ethernet packet

Packets size: 64 to 1518 bytes + 6 bytes of preamble

CSE 466 - Winter 2006 Communication 24

Arbitration

Wait for line to be quiet for a while then transmit
detect collision
average value on wire should be exactly between 1 and 0
if not, then two transmitters are trying to transmit data

If collision, stop transmitting
wait a random amount of time and try again
if collide again, pick a random number
from a larger range (2x) and try again

Exponential backoff on collision detection
Try up to 16 times before reporting failure

CSE 466 - Winter 2006 Communication 25

Extending Ethernet

Segments, repeaters, and gateways
segment: a single cable
repeater: transfers all messages on one segment to another and vice-versa
gateway: selectively forwards messages to other segments and helps
isolate traffic

Segment

Repeater

Gateway

CSE 466 - Winter 2006 Communication 26

Infrared Data Association

Consortium of over 160 companies
Meet needs of the “mobile professional”

Short interactions with other devices (file transfer, printing)
Possibly using others’ peripherals (visiting a customer’s office)

Goals:
Suitable replacement for cables
Interoperability
Minimal cost
“Point-and-shoot” model (intended use and to reduce interference)

History:
First standard developed in 1994
Revisions as recently as late 1998 (i.e., still active)

CSE 466 - Winter 2006 Communication 27

Radio (RF)
Microwaves

Infrared (IR)
Visible

Ultraviolet
X-Rays Gamma

Rays

FCC$
109 1012 1014 1015 1017 1020

Freq.
(Hz)

IrDA: Infrared Data Association

Characteristics of IR:
Implementation costs rise significantly around 1-10 GHz

one important exception is IR at around 500 THz – very inexpensive
Signals above 100 GHz cannot penetrate walls
Most signals below 300 GHz are regulated by the FCC

CSE 466 - Winter 2006 Communication 28

Speed

Components include:
Transmitter (LED) and paired receiver (photodiode)

IrDA supports wide range of speeds
2400 bps to 4 Mbps
Exact physical-layer protocol used depends on speed of IrDA connection
Uses highest speed available on both devices

determined when connection is established

Future promises even higher speeds:
16-50 Mbps is not too far off

Comparison to other wireless technologies:
Low-power RF (e.g., Bluetooth) slightly slower (.5 - 2 Mbps max)
Bound by walls, easy to control, intentional aspect
Much lower-power than high-speed RF (e.g., 802.11a at 50Mbps)

CSE 466 - Winter 2006 Communication 29

0 0 1 0 01

Low-speed Modulation

Speed: 2400 bps - 115 kbps (“Serial Infrared”, or SIR)
Only 0’s require pulse (and thus power) ; pulse < full bit time
Standard UART byte framing
Pulse is constant 1.6 µs long (so duty cycle varies with speed)
Average duty cycle: ≤ 9%

Speed: 576 kbps - 1 Mbps
similar to SIR (pulse only for 0’s ; pulse < full bit time)
pulse lasts 1/4 of bit time (so pulse varies with speed)
Average duty cycle: 12.5%

Speed: 4 Mbps (“Fast Infrared”, or FIR)
uses four-pulse-position-modulation scheme (4PPM)
pulse during exactly 1/4 of each symbol boundary
4PPM makes synchronization easier to maintain
Duty cycle: 25% (independent of data)
Lowest power/bit

0 0 1 0 01

0 0 0 1 1 0 1 1

CSE 466 - Winter 2006 Communication 30

0 - 1 m

Range

Linear:
IrDA standard requires 0-1 m
Realistically, some transceivers work at up to 10 m

Angular:
Limited to a narrow cone (15° half-angle)
Done to help reduce interference between devices

CSE 466 - Winter 2006 Communication 31

Physical Layer
Data-link Layer

Network Layer
Transport Layer

Application Layer

Standard Network Model IrDA Protocol Stack

Physical Layer

IrLAP
IrLMP

TinyTP
IrC

O
M

M

IrL
A

N

IrO
B

EX

IrDA Protocol Stack

Analogous to the standard layered network model
Consists of both required and optional components

Handle connections/disconnections
Implement reliable transfer

Multiplexes several “virtual” connections on
a single IrLAP connection (logical service
access points – LSAPs)

Segmentation and re-assembly
automatically break-up large packets
(and put back together correctly)
Per-channel flow control

Serial and parallel port emulation
IrDA interface acts as a local-area network
IR “Object Exchange” – transfer of objects

CSE 466 - Winter 2006 Communication 32

Total: 5 bytes

Total: 58 bytes (minimum)

Protocol Overhead

Very simple model (point-to-point), so can expect reduced protocol overhead
For layers in IrDA protocol stack, overhead per packet/frame is:

IrLAP = 2 bytes
IrLMP = 2 bytes
TinyTP = 1 byte

For perspective, compare to TCP/IP over Ethernet:
Ethernet = 18 bytes minimum
IP = 20 bytes
TCP = 20 bytes

IrDA takes advantage of its simpler model, and keeps protocol overhead very low.

CSE 466 - Winter 2006 Communication 33

Firewire

Interconnection for high-bandwidth consumer electronic devices
e.g., still and video cameras, MP3 players, digital video recorders
IEEE 1394a standard
12.5-400 Mbits/sec (soon to be 800 Mbits/sec with 1394b)

Most consumer devices use 100 Mbits/sec
Up to 63 devices connected at once on 4.5m cables

Up to 16 cables can be daisy-chained to 72m
Devices connect for power as well as communication
Hot-swappable devices
Asynchronous and isochronous data transfers

CSE 466 - Winter 2006 Communication 34

Firewire Electrical/Mechanical Spec

4-6 wires depending on whether device needs power
Tree arrangement

each branch is bandwidth limited

Digital VCR

Digital
Camcorder

Digital
Camcorder

DV Monitor

PC with
IEEE 1394

IEEE 1394
Hard Drive

CSE 466 - Winter 2006 Communication 35

Firewire data format

Data is transferred in addressed packets, and is transaction-
based
Transfers can be asynchronous or isochronous

Asynchronous transfers are used mainly for bus configuration,
setting up transfers and handshaking, but are also used for bulk
data transfer to and from hard disk drives, etc.
Isochronous transfers are used for transporting timesensitive data
like digital video and audio

Data packets have a 64-bit address header
10-bit network address
6-bit node address
48 bits for data memory addresses at the receiving node

Ability to address 1023 networks of 63 nodes, each with up to
281TB (terabytes) of data addresses

CSE 466 - Winter 2006 Communication 36

Firewire data format (cont’d)

Bus manager
One device on the bus (usually a PC)

Isochronous resource manager
Allocates bus bandwidth for isochronous data transfers based on
time-domain multiplexing (TDM) that guarantees a proportion of
the total time slots to each device

Bandwidth allocation unit is 20.3ns, 6144 of them in a basic cycle of
125us
25us of every cycle is always reserved for asynchronous control data
transfers, so a maximum of 4195 units is available for isochronous
transfers
Typically a stream from a DV camcorder to a PC or digital VCR might
need to be allocated a channel of ~1800 bandwidth units, for about
30Mb/s

Asynchronous transfers can have multiple data packets per basic
cycle, within the 25us reserved for this type of signalling

CSE 466 - Winter 2006 Communication 37

Firewire signalling

Data-strobe signalling
Avoids two signals where both change at the same time
Keeps noise levels low

Strobe easily derived at transmitter
Strobe = Clock xor Data

Clock is easily recovered at receiver
Clock = Data xor Strobe

Data

Strobe

Clock

1 0 1 1 0 1 1

CSE 466 - Winter 2006 Communication 38

Serial Peripheral Interface

Common serial interface on many microcontrollers
Simple 8-bit exchange between two devices

Master initiates transfer and generates clock signal
Slave device selected by master

One-byte at a time transfer
Data protocols are defined by application
Must be in agreement across devices

CSE 466 - Winter 2006 Communication 39

SPI Block Diagram

8-bits transferred in each direction every time
Master generates clock
Shift enable used to select one of many slaves

CSE 466 - Winter 2006 Communication 40

SPI on the ATmega16

Prescaler for
clock rate
Interrupt on
receive and on
send complete
Automatically
generates SS

CSE 466 - Winter 2006 Communication 41

SPI Registers

CSE 466 - Winter 2006 Communication 42

Using SPI as a Master
void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */
DDRB = _BV(DD_MOSI) | _BV(DD_SCK);
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = _BV(SPE) | _BV(MSTR) | _BV(SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(!(SPSR & _BV(SPIF)))
;

}

CSE 466 - Winter 2006 Communication 43

Using SPI as a Slave
void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDRB = _BV(DD_MISO);
/* Enable SPI */
SPCR = _BV(SPE);

}

char SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & _BV(SPIF)))
;
/* Return data register */
return SPDR;

}

CSE 466 - Winter 2006 Communication 44

Data Payload on SPI

Data is exchanged between master and slave
Master always initiates
May need to poll slave (or interrupt-driven)

Decide on how many bytes of data have to move in each direction
Transfer the maximum for both directions
One side may get more than it needs

Decide on format of bytes in packet
Starting byte and/or ending byte?
Can they be distinguished from data in payload?
Length information or fixed size?

SPI buffer
Write into buffer, specify length, master sends it out, gets data
New data arrives at slave, slave interrupted, provides data to go to
master, reads data from master in buffer

CSE 466 - Winter 2006 Communication 45

Sample code for FTDI SPI
int main(void)
{

FTDI466API usbDevice;
char buffer[256];
unsigned char rxBuffer[256];
unsigned char txBuffer[256];
DWORD numBytesToSend;
DWORD bytesSent;
DWORD numBytesToRead;
DWORD bytesReceived;
// setup USB device for MPSSE mode
bool setup = usbDevice.open();
if(!setup)

return 0;
cout << "INITIALIZING SPI" << endl;
// setup for SPI communication
txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x08; // make CS high
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x86; // set clk divisor to Tx at 200kHz
txBuffer[4] = 0x1D; // speed low byte
txBuffer[5] = 0x00; // speed high byte
txBuffer[6] = 0x85; // disconnect TDI/DO output from TDO/DI input for loopback testing
numBytesToSend = 7;

CSE 466 - Winter 2006 Communication 46

Sample code for FTDI SPI (cont’d)

// send the instructions ot the USB device
bytesSent = usbDevice.write(txBuffer, numBytesToSend);

if(bytesSent != numBytesToSend)
cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

// see if there were any error codes when setting up SPI
numBytesToRead = usbDevice.getReceiveQueueSize();

if(numBytesToRead > 0)
{

bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the error bytes" << endl;

for(unsigned int i = 0; i < bytesReceived; i++)
cout << "Error Byte: " << rxBuffer[i] << endl;

}

CSE 466 - Winter 2006 Communication 47

Sample code for FTDI SPI (cont’d)
// loop to demonstrate the SPI protocol
for(int loop = 0; loop < 10; loop++)
{

Sleep(1000);

txBuffer[0] = 0x80; // setup PORT
txBuffer[1] = 0x00; // make CS low
txBuffer[2] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4
txBuffer[3] = 0x35; // clock out on negative edge, in on negative edge, MSB
txBuffer[4] = 0x04; // low byte of length : note a length of zero is 1 byte, 1 is 2 bytes
txBuffer[5] = 0x00; // high byte of length
txBuffer[6] = 0x71; // payload
txBuffer[7] = 0x72;
txBuffer[8] = 0x73;
txBuffer[9] = 0x74;
txBuffer[10] = 0x75;
txBuffer[11] = 0x80; // setup PORT
txBuffer[12] = 0x08; // make CS high
txBuffer[13] = 0x0B; // outputs: SK, DO, CS, inputs: DI, GPIOL1-L4

numBytesToSend = 14;

// send bytes
bytesSent = usbDevice.write(txBuffer, numBytesToSend);
if(bytesSent != numBytesToSend)

cerr << "Not all the bytes were sent when initializing MPSSE" << endl;

CSE 466 - Winter 2006 Communication 48

Sample code for FTDI SPI (cont’d)

Sleep(5); // make sure the usb device has enough time to execute command - 5 ms latency timeout is set

// get number of bytes in the received queue
numBytesToRead = usbDevice.getReceiveQueueSize();
cout << "Received " << numBytesToRead << " Bytes" << endl;
if(numBytesToRead > 0)
{

// get the received bytes
bytesReceived = usbDevice.read(rxBuffer, numBytesToRead);

if(bytesReceived != numBytesToRead)
cerr << "Problem when trying to retrieve the bytes from the receive queue" <<

endl;
else
{

// print out the bytes received over SPI in hex
for(unsigned int i=0; i < bytesReceived; i++)

cout << itoa(rxBuffer[i],buffer,16) << " ";
cout << endl;

}
}

}

CSE 466 - Winter 2006 Communication 49

Universal Serial Bus

Connecting peripherals to PCs
Ease-of-use
Low-cost
Up to 127 devices (optionally powered through bus)
Transfer rates up to 480 Mb/s

Variable speeds and packet sizes
Full support for real-time data for voice, audio, and video
Protocol flexibility for mixed-mode isochronous data transfers
and asynchronous messaging

PC manages bus and allocates slots (host controller)
Can have multiple host controllers on one PC
Support more devices than 127

CSE 466 - Winter 2006 Communication 50

USB Peripherals

CSE 466 - Winter 2006 Communication 51

USB

Tree of devices
– one root controller

CSE 466 - Winter 2006 Communication 52

USB Data Transfer

Data transfer speeds
Low is <0.8v, high is >2.0v differential
480Mb/sec, 12Mb/sec, 1.5Mb/sec
Data is NRZI encoded (data and clock on one wire)
SYNC at beginning of every packet

CSE 466 - Winter 2006 Communication 53

NRZI Encoding

NRZI – Non-return to zero inverted
Toggles a signal to transmit a “0” and leaves the signal unchanged
for a “1”
Also called transition encoding
Long string of 0s generates a regular waveform with a frequency
half the bit rate
Long string of 1s generates a flat waveform – bit stuff a 0 every 6
consecutive 1s to guarantee activity on waveform

CSE 466 - Winter 2006 Communication 54

NRZI Encoding (cont’d)

CSE 466 - Winter 2006 Communication 55

USB Data Transfer Types

Control Transfers:
Used to configure a device at attach time and can be used for
other device-specific purposes, including control of other pipes on
the device.

Bulk Data Transfers:
Generated or consumed in relatively large and bursty quantities
and have wide dynamic latitude in transmission constraints.

Interrupt Data Transfers:
Used for timely but reliable delivery of data, for example,
characters or coordinates with human-perceptible echo or
feedback response characteristics.

Isochronous Data Transfers:
Occupy a prenegotiated amount of USB bandwidth with a
prenegotiated delivery latency. (Also called streaming real time
transfers)

CSE 466 - Winter 2006 Communication 56

USB Packet Format

Sync + PID + data + CRC
Basic data packet

Sync: 8 bits (00000001)
PID: 8 bits (packet id – type)
Data: 8-8192 bits (1K bytes)
CRC: 16 bits (cyclic redundancy check sum)

Other data packets vary in size
May be as short as only 8 bits of PID

CSE 466 - Winter 2006 Communication 57

USB Protocol Stack

FTDI
USB chip
implements
right side
Communicates
to physical
device
through SPI

CSE 466 - Winter 2006 Communication 58

More Communication Later

Bluetooth
Popular radio frequency protocol
We’ll discuss after looking at wireless sensors

PCMCIA/CompactFlash
Popular parallel bus protocol
We’ll discuss (time permitting) at end of quarter

