Pipelining: Some definitions

4+ Latency: Time to perform a computation
< Data in to data out

4+ Throughput: Input or output data rate
< Typically the clock rate

+ Combinational delays drive performance
<~ Define d = delay through slowest combinational stage
n = number of stages from input to output
» Latency x n _d (in sec)
» Throughput « 1/d (in Hz)

Pipelining and retiming

Pipelining: What and why

4+ What?
< Subdivide combinational logic Logic Reg

< Add registers between logic blocks
+ Why?

< Increase clock speed
» Reduce logic delays
» But...takes a few cycles to fill
the pipe . :
<~ Trade lell)tency for throughput Logic Reg Logic Reg
» Latency worse
» Throughput better
< Increase circuit utilization
» Simultaneous computations

Pipelining and retiming

Reg Logic Reg

Pipelining: When and where

4+ When?
< Throughput more important than latency
» Signal processing

< Logic delays >> flip-flop setup/hold times
<~ No acyclic logic

4 Where?

< At natural breaks in the combinational logic
<~ Adding registers makes sense

Pipelining and retiming

Pipelining example

II —p{ log Out

[REG |

=2

REG |

(a) Nonpipelined version

Out

A
L
o

REG |
g
«

REG]

N
REG |

°REG | ©REG | *©
©
©

(b) Pipelined version

Datapath for the computation of log(la + bl)

Pipelining and retiming

Retiming

4+ Retiming: Rearrange storage elements
< To optimize performance
» Minimize critical path
» Optimize logic across register boundaries
» Reduce register count
<~ Without altering functionality

4+ Pipelining adds registers
< To increase the clock speed

4+ Retiming moves registers around
< Reschedules computations

Pipelining and retiming

Retiming 1n a nutshell

4+ Change position of FFs
<~ To optimize an FSM after
assignment/optimization
» For speed
» To suit implementation target

4+ Retiming modifies state assignment
<~ Moving registers alters state codes
< Preserves FSM functionality

Pipelining and retiming

Retiming rules

4+ Fast optimal algorithm
< See Leiserson & Saxe, 1983

4+ Rules:

<~ Remove one register from each input and add one to each output
<~ Remove one register from each output and add one to each input

.53-(@\

Pipelining and retiming 7

Retiming examples

4+ Reduce register count

a —D/\Q __|__ a - C
o s __|——:>'d_ - X =D ATy D) X

4+ Create simplification opportunities

—|D Q
a A a —|D Qf-

I }D o T
¢ =" . A 4
= Q_FDJ D_ :D_

Pipelining and retiming 8

Retiming examples (con’t)

4+ Move logic to suit implementation target

Original Design

Dl

Feset

00—

D

oo —

%}]j%

Pipelining and retiming

i)

Clock

nl

Retimed Design

Rezet

oo —

N —

N —

o' —

oo —

no—d]

01—

0 —

0l —

s

e

— 01

o
I

— Open

— oo

Clock

Optimal pipelining

+ Add registers

< Use retiming to find optimal location

Pipelining and retiming 10

Example: Digital correlator

+ ¥ =0(X;, 2p) T 0(Xy, 1) T 0(X, @y) T O(Xy 3, 23)
{ 8(x,a)=1if x =a; 0 otherwise
{ d passes x to the right (unchanged)

N

Yt

X dg dj d) d3

Pipelining and retiming 11

Example: Digital correlator (cont’d)

4+ Delays: Comparator = 3; adder = 7

-0l

cycle time = 24

cycle time = 13 E : I 'I\

Pipelining and retiming

Retiming: Step-by-step

Pipelining and retiming 13

Retiming: step-by-step (cont’d)

and after a few more.. ..
0

Pipelining and retiming 14

Formal algorithm for retiming

4+ Represent circuit as a directed graph
< Vertices v: Logic gates
< Edges e: Connections between logic (0 or more registers)
< Delay d: Delay of vertex v
< Weight w: Number of registers on edge e

4+ Problem statement
< Given cycle time ¢ and the circuit graph

< Adjust weights w (number of registers) so that all path delays d < ¢
» Preserving logic functionality

4+ Approach
< Generate matrices for w and d
< [terate to minimize ¢ (use linear programming)

Pipelining and retiming

15

For you to think about...

4+ Registers slow the data path
< To synchronize delays

4+ Hard: Use latches instead of registers
< Permits faster circuits
< Fast data slows down; slow data passes through transparent latch

4+ Harder: Self-timed datapath
<~ Handshaking decides when data passes

4+ Hardest: Wave-pipelining
< Delete the registers
» Waves of data flow through circuit
» Requires equal-delay circuit paths

Pipelining and retiming

16

