Ways of specifying circuits

4+ Schematic
< Structural description
< Describe circuit as interconnected elements
» Build complex circuits using hierarchy
» Large circuits are unreadable

+ HDLs
< Hardware description languages
» Not programming languages
» Parallel languages tailored to digital design
< Synthesize code to produce a circuit

CSE467, Combinational Verilog



Hardware description languages (HDLs)

4+ Abel (~1983)
<~ Developed by Data-1/0O
< Targeted to PLDs
< Limited capabilities (can do state machines)

4+ Verilog (~1985)

<~ Developed by Gateway (now part of Cadence)
< Similar to C

+ VHDL (~1987)

< DoD sponsored
< Similar to Ada

CSE467, Combinational Verilog



Verilog versus VHDL

4+ Both “IEEE standard” languages
4+ Most tools support both

4+ Verilog 1s “simpler”
< Less syntax, fewer constructs

4+ VHDL 1s structured for large, complex systems
< Better modularization

CSE467, Combinational Verilog



Simulation versus synthesis

4+ Early HDLs supported execution/simulation only
<~ Hand transform code to a schematic

4+ Current HDLs support direct synthesis to hardware
<~ A “synthesizeable subset” of the language

HDL. circuit
description
et

functional functional/timing
validation validation

CSE467, Combinational Verilog



Simulation versus synthesis (con’t)

4+ Simulation
> Models what a circuit does, not how it does it
» e.g. multiply
1 Just say “*”, ignoring the implementation possibilities
< Includes functions and timing
< Allows you to quickly test design options

4+ Synthesis
< Converts your code to a netlist
» Description of interconnected circuit elements
» No timing
< Tools map your netlist to hardware

4+ Verilog and VHDL both simulate and synthesize

CSE467, Combinational Verilog 5



Simulation

4+ You provide a circuit environment
< Using misc non-circuit constructs

» Read files, print, control simulation

< Using Verilog simulation code

» A “test fixture”

1 A specification

1 Tests if circuit behavior (I/0) 1s correct

Simulation

Test Fixture
(Specification)

>
>

—

Circuit Description
(Synthesizeable)

CSE467, Combinational Verilog




Structural versus behavioral Verilog

4+ Structural
< Describe explicit circuit elements
< Describe explicit connections between elements
» c.g., logic gates are instantiated and connected to others

< Just like schematics, but using text

4+ Behavioral
< Describes circuit as algorithms/programs
» What a component does
» Input/output behavior
< Many possible circuits could have same behavior
» c.g., different implementation of a Boolean function

CSE467, Combinational Verilog 7



Levels of abstraction

4+ Verilog supports 4 description levels:

< Switch
S Gate > structural

< Dataflow
. : behavioral
< Algorithmic > craiord

4+ Can mix & match levels in a design

4+ Designs that combine dataflow and algorithmic constructs

and synthesize are called RTL
< Register Transfer Level

CSE467, Combinational Verilog



What you will do...

4+ Use a synthesizeable subset of Verilog
< e.g. no “initial” blocks
< Using structural and “synthesizeable” behavioral Verilog

+ Will simulate your Verilog code
<~ Use ActiveHDL

+ Will synthesize your code
< Use SimplifyPro

+ Will map your netlist
< ISE

+ Will simulate your netlist
< After synthesis
< All your code will synthesize (by necessity)

CSE467, Combinational Verilog



Verilog tips

4+ Do not write C-code
< Don’t write algorithms
» You will not get efficient circuits
» Compilers don’t map algorithms to circuits well

4+ Do describe hardware circuits
< Don’t start coding until you have a complete dataflow diagram

4+ References
< http://www.cs.washington.edu/education/courses/467/99au/admin/HardwareLab.html
< http://www.europa.com/~celiac/ver eda.html

CSE467, Combinational Verilog 10



Modules

4+ The basic building block
< Instance into a design
< Illegal to nest module defs
<~ Example: 4-bit adder

module add4 (A, B, SUM, OVER)

input [3:0] A ;
input [3:0] B ;
output [3:0] SUM ;
output OVER ;

.
4

Module Name,

Port List, Port Declarations (if ports present)

Parameters(optional),

Declarations of wires,
regs and other variables

Data flow statements
(assign)

Instantiation of lower
level modules

always and initial blocks.
All behavioral statements
go in these blocks.

Tasks and functions

endmodule statement

assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];

endmodule

CSE467, Combinational Verilog

11




Modules

4+ Modules are circuit components
<~ “parameter list” is a list of external connections
» A list of ports

< Port types: “input”, “output” or “inout”
» inout are used on tri-state buses

module name ports

|

v
module full addr (A, B, Cin, S, Cout);

input A, B, Cin; - @@

output S, Cout; «— inputs/outputs

assign {Cout, S} = A + B + Cin;
endmodule

CSE467, Combinational Verilog 12



Structural Verilog

module xor gate (out, a, b);

input
output
wire

inverter
inverter
and gate
and gate
or_gate

endmodule

oy -
=

abar, bbar, tl, t2;

invA (abar, a);
invB (bbar, b);
andl (tl, a, bbar);
and2 (t2, b, abar);
orl (out, tl1, t2);

Note: Verilog is case sensitive
=> All keywords are lowercase

CSE467, Combinational Verilog 13



Structural full adder

module full addr (A, B, Cin, S, Cout);
input A, B, Cin;
output S, Cout;

assign {Cout, S} = A + B + Cin;
endmodule

module adder4 (A, B, Cin, S, Cout);
input [3:0] A, B;

input Cin;

output [3:0] S;

output Cout;

wire Cl, C2, C3;

full addr fa0 (A[O], B[O], Cin, S[O0], C1);

full addr fal (A[1], B[1], Cl1, S[1], C2);

full addr fa2 (A[2], B[2], C2, S[2], C3);

full addr fa3 (A[3], B[3], C3, S[3], Cout);
endmodule

CSE467, Combinational Verilog



Behavioral Verilog

module and gate (out, inl, in2);
input inl, in2;
output out;

assign out = inl & in2;
endmodule

Note: AND is a Verilog primitive, so you can also write

and and gate(out, inl, in2);

CSE467, Combinational Verilog

15



Data types

+ Values on a wire
< 0, 1, x (don’t care), z (tristate)

4+ Vectors
< A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
» An unsigned integer value

< Concatenating bits/vectors
» c.g. sign extend
0 B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
0 B[7:0] = {4{A[3]}, A[3:0]};
< Style: Use a[7:0] =b[7:0] + c;
Not a=Db+c;

CSE467, Combinational Verilog

16



Numbers

4+ 14
< Decimal number
+ —14

<~ 2’s complement binary of the decimal number

+ 12°b0000 0100 0110
< 12 bit binary number (_ is ignored)

+ 3°h046

< 12 bit hexadecimal number

4+ Verilog values are unsigned
& C[4:0] = A[3:0] + B[3:0];
» if A=0110 (6) and B = 1010(-6), then C = 10000 (10 00000)
» B is zero-padded, not sign-extended

CSE467, Combinational Verilog

17



Operators

bit-select or part-select

> greater than Relational
>= greater than or equal to Relational
< less than Relational
<= less than or equal to Relational
= logical equality Equality
I= logical inequality Equality
=== case equality Equality
I== case inequality Equality
& bit-wise AND Bit-wise

A bit-wise XOR Bit-wise
A~or~" | bit-wise XNOR Bit-wise

| bit-wise OR Bit-wise
& logical AND Logical

|1 logical OR Logical
7 conditional Conditional

O parenthesis

! logical negation Logical

~ negation Bit-wise

& reduction AND Reduction

| reduction OR Reduction
~& reduction NAND Reduction
~} reduction NOR Reduction
A reduction XOR Reduction
~Nor A reduction XNOR Reduction
+ unary (sign} plus Arithmetic
- unary (sign) minus Arithmetic
{} concatenation Concatenation
{n replication Replication
* multiply Arithmetic
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic
- binary minus Arithmetic
<< shift left Shift

>> shift right Shift

CSE467, Combinational Verilog

18




Variables

+ wire
< Connects components together

4+ reg
< Saves a value
» Part of a behavioral description
» Usually corresponds to a wire
< Does NOT necessarily become a register when you synthesize

4+ The rule
< Declare a variable as reg if it is a target of an assignment statement
» Continuous assign doesn’t count

CSE467, Combinational Verilog

19



