High-speed signaling

- Delays
- Transmission lines
- Ringing and terminations
- Pin inductance
- Tips and suggestions

What does high-speed mean?

C. Diorio: Transmission lines

Abstractions in digital design

Digital interpretation of analog values

- Transistors as switches
- Analog voltages as "1s" or "0s"

2 Logic devices as idealized Boolean primitives

- Switches as logic elements
- ⇒ Ignore electrical characteristics of devices, wire, etc.

Steady-state abstraction

- Combinational: Outputs depend on inputs after a sufficient time
- Sequential: Outputs retain their settled state
 - Clock hides transient behavior
- Inite-state behavior of sequential systems

Definition of "high speed"

The speed at which one or more digital abstractions fail, as a direct consequence of the circuit speed

- \Rightarrow Speed = Clock frequency and/or edge rates
- Typical problems
 - Logic gates or flip-flops don't have time to settle
 - Clock skew causes races
 - Wire (interconnect) acts like transmission lines

When wire isn't...

- A// wires are transmission lines
 Just like all voltages are analog
- Past: Signals on PCBs were slow
 - Wire delays were small compared with signal risetimes
 - Wires passed digital voltages unchanged
- Today: PCB design requires transmission-line analysis
 - Wire delays are long compared with signal risetimes
 - Wires don't pass digital voltages unchanged

Horizontal Scale = 20 ns/cm

Background: Time constants

C. Diorio: Transmission lines

$V_{\rm in} = v_r + V_{\rm out}$	$v_r = i \mathbf{R}$	$i = C \frac{dV_{out}}{dt}$
V_{in}	$= i\mathbf{R} + V_{out}$	
$V_{\rm in}$	$= \mathrm{RC}\frac{dV_{\mathrm{out}}}{dt} -$	+V _{out}
$-\mathrm{RC}dV_{\mathrm{out}}$	$= (V_{\text{out}} - V_{\text{in}})$	dt
$-\frac{dt}{RC}$	$=\frac{dV_{\rm out}}{(V_{\rm out}-V_{\rm in})}$	-
$-\frac{1}{RC}\int_{0}^{t}dt$	$= \int_{0}^{v_{out}(t)} \frac{dV_{out}}{(V_{out} - $	$-V_{\rm in}$)
$-\frac{t}{RC}$	$=\ln(V_{\rm out}(t))$	$-V_{\rm in} ight)-\ln\left(-V_{\rm in} ight)$
$V_{\rm out}(t)$	$=V_{\rm in}\left(1-e^{-\frac{1}{F}}\right)$	$\left(\frac{t}{RC}\right)$

Background: Maximum power transfer

• How much power do you transfer to R_L ?

- \Rightarrow Transfer zero power when $R_L = 0$
- \Rightarrow Transfer zero power when $R_L = \infty$
- \Rightarrow Transfer maximum power when $R_L = R_S$

- ◆ Our problem: R_s is a transmission line (a wire)
 ⇒ Transfer maximum power when R₁ = wire impedance
 - ⇒ Else some power is returned to the voltage source

Transmission-line model

This is a model of a wire (an abstraction)
 Adequate when dispersion is low

Equivalent Circuit of a Transmission Line

Cases

- 1) R_0 , C_0 , L_0 are small:
- 2) R_0 , L_0 are small:
- 3) L_0 is small:
- 4) None are small:

Treat wire as ideal Treat wire as lumped capacitance Treat wire as distributed RC Treat wire as transmission line

Cases 2, 3: RC models

$$R_0 << R_S$$
$$V_{out} = 1 - e^{-t/RC}$$

Where R is the total resistance C is the total capacitance Wire is short (defined later)

C. Diorio: Transmission lines

$$R_0 \sim R_S$$

 $V_{out} = 1 - e^{-2t/R_0 C_0 l^2}$

Where ℓ is the length of the wire R0 is resistance per unit length C0 is capacitance per unit length R0 dominates inductance L

Case 4: Transmission-line model

- Problem: Signal risetime is faster than the wire delay
 Inductance L limits the propagation velocity by V=L(dI/dt)
- Thought process: We won't see ringing if it occurs entirely during the signal's rising or falling edge
- Assume a simple wire

$$\Rightarrow$$
 Require length_{max} $< \frac{t_r}{2t_{pd}}$

or

delay_{max}
$$< \frac{t_r}{2}$$

 \Rightarrow Where $t_r \equiv$ rise time

$$\Rightarrow$$
 t_{pd} = delay per unit length

- \Rightarrow length = length of wire
- \Rightarrow delay = wire delay = t_{pd} × length

The factor of 2 accounts for the fact that the signal has to travel to the end of the wire, then return on the ground plane

Some definitions

• $t_{pd} = \sqrt{L_0 C_0}$ in ns/ft

The signal propagation time

$$\bullet \quad Z_0 = \sqrt{\frac{L_0}{C_0}}$$

in Ohms

- The impedance of a transmission line
- How to find C_0 and L_0 ?
 - ⇒ Use an LCR meter
 - ⇒ Use an EM simulator

L₀ is inductance per unit length

Most PCB vendors will size traces for you

You just tell them Z₀

Microstrip: Wire over a plane

Stripline: Wire sandwiched between planes

$$Z_0 = \frac{60}{\sqrt{\varepsilon_r}} \ln\left(\frac{4b}{0.67\pi w \left(0.8 + \frac{t}{w}\right)}\right) \quad \text{Ohms}$$

$$t_{pd} = 1.017\sqrt{\epsilon_r}$$
 ns/ft

Tip: Planes can be power *or* ground

C. Diorio: Transmission lines

Loading a line

Attaching logic gates to a line increases the capacitance
 ⇒ Where C_d = Capacitive load on transmission line

What if we violate the limit?

- Get overshoot/undershoot and reflections
 - Signal bounces back and forth between the ends of the line
 - Bounce gets reduced by a factor ρ at each reflection

$$\rho_{\rm S} = \frac{R_{\rm S} - Z_0}{R_{\rm S} + Z_0}$$

$$\rho_{\rm L} = \frac{R_{\rm L} - Z_0}{R_{\rm L} + Z_0}$$

C. Diorio: Transmission lines

- Terminate line into an equivalent load
 - Advantages
 - Can distribute gates along line
 - Disadvantages
 - Driver consumes lots of power
 - Driver has large output currents
 - Driver has large transients
- Note: Properly terminated lines look like purely resistive loads

Horizontal Scale = 10 ns/cm

(b) Input and Output Waveforms

- Terminate the line into a Thevenin equivalent load
 - Termination as good as option1
 - → Advantages
 - Can distribute gates along line
 - Smaller peak output current than option1
 - Smaller driver transients than option1
 - Disadvantages
 - Same total power as option1
 - Need to set DC bias at logic threshold

$$\mathbf{R}_{\mathrm{L}} = \frac{\mathbf{R}_{1}\mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$$

- Series terminate the line
 - Termination inferior to option1
 - → Advantages
 - No static power consumption
 - Can drive many loads
 - Disadvantages
 - Half-amplitude transients on line
 - Cannot place gates along line (only place gates at ends)

Tip: $Z_{wire} \sim 100-140$ Ohms (assuming no ground plane)

Driving multiple loads using option3

Differentially terminate the line

- Termination as good as option1
- Advantages
 - Can distribute gates along line
 - Differential signals
 - Low crosstalk
 - Don't need contiguous ground plane
- Disadvantages
 - High driver power
 - Need differential receivers
- Note: Great for buses
 - Put terminations at both ends of bus
 - ⇒ SCSI uses this approach

Twisted Pair Line

Issues

• Rule was:
$$length_{max} < \frac{t_r}{2t_{pd}}$$
 or $delay_{max} < \frac{t_r}{2}$

- ♦ But...
 - Series terminated lines have accelerated rise times
 - Voltage doubles at line end
 - - Assumes accurate calculations...

Instructor experience: This rule is not conservative enough

A more conservative rule

• **Rule:**
$$\operatorname{length}_{\max} < \frac{t_r}{4t_{pd}}$$
 or $\operatorname{delay}_{\max} < \frac{t_r}{4}$

- \Rightarrow Where $t_r \equiv$ rise time
- \Rightarrow t_{pd} = delay per unit length
- \Rightarrow length = length of wire
- \Rightarrow delay = wire delay = $t_{pd} \times length$
- \Rightarrow Use t'_{pd} when line is loaded

Back of the envelope calculations

Tip: Pin inductance and I/O speed

/ Т

• Rule of thumb:
$$t_{r_{min}} > \frac{5L}{Z_0}$$

- \Rightarrow t_{r min} is minimum signal rise time
- ↓ L is pin inductance
- \Rightarrow Z₀ is trace impedance
- ⇒ Example:
 - ▶ L = 5nH
 - \blacktriangleright Z₀ = 50 Ohms
 - $t_{r_min} = 500$ psec

Tips for series terminations

- Use a series resistor for each load
 Drive all loads in parallel
- Do not daisy-chain loads
 - Half-amplitude voltage swings on the wire
- Reduce R_s by 33%
 - \Rightarrow Example: If Z=50, choose R_s = 33 Ohms
 - Driver has a finite source impedance
 - Line loads cause $Z\downarrow$
 - Slight overshoot is good (fast edges)

Tips for minimizing reflections

- Reduce signal rise times
 Example: Xilinx has selectable output rise times
- Reduce line lengths
- Terminate long lines properly
- Use contiguous ground or power planes
 - Under transmission lines
 - Or use differential terminations
- Avoid sharp bends in wires
 - Curves are better than corners

Tips for routing traces on PCBs

- Use differential wires to communicate between systems
 Or through card-edge connectors
- Use ground & power planes
 - Low-Q decoupling capacitors between them
 - Avoid cuts in ground plane
 - esp. under controlled-impedance traces
- Avoid long parallel wires
 - Unless they are differential
 - Using ground between traces reduces crosstalk

Tips for ground planes

- The width of a ground plane must be 3× the width of the controlled impedance trace
 - Do not put cuts in the ground plane
 - Put ground plane directly under trace

Variation of Microstrip Impedance as a Function of Ground Width \div Line Width

