
Sequential Logic 1

clock

data in
may changestable

data out (Q) stable stablestable

Registers

! Sample data using clock

! Hold data between clock cycles

! Computation (and delay) occurs between registers

clock

data in
D Q D Q data out

Sequential Logic 2

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data

changingstable

input

clock

Tsu Th

Timing Methodologies (cont’d)

! Definition of terms

! setup time: minimum time before the clocking event
by which the input must be stable (Tsu)

! hold time: minimum time after the clocking event
until which the input must remain stable (Th)

clock

data
D Q D Q

Sequential Logic 3

all measurements are made from the clocking event that is,
the rising edge of the clock

Typical timing specifications

! Positive edge-triggered D flip-flop

! setup and hold times

! minimum clock width

! propagation delays (low to high, high to low, max and typical)

Th
1ns

Tw 7ns

Tplh
[2,4]ns

Tphl
[1,3]ns

Tsu
2ns

D

CLK

Q

Tsu
2ns

Th
1ns

Sequential Logic 4

Synchronous System Model

! Register-to-register operation

! Perform operations during transfer

! Many transfers/operations occur simultaneously

Combinational
Logic

Q0 Q1

Sequential Logic 5

System Clock Frequency

! Register transfer must fit into one clock cycle

! reg tpd + C.L. tpd + reg tsu < Tclk

! Use maximum delays

! Find the “critical path”
! Longest register-register delay

tsu th

Combinational
Logic

reg tpd

C.L. tpd

Q0 Q1

Sequential Logic 6

Short Paths

! Can a path have too little delay?

! Yes: Hold time can be violated

! tpd > th

! Use min delay (contamination delay)

! Fortunately, most registers have hold time = 0

! But there can still be a problem! Clock skew…

tsu th

Q0 Q0

reg tpd

Sequential Logic 7

Clock Skew

! Cannot make clock arrive at registers at the same time

! If skew > 0:

! tpd > th + tskew

! Clock skew can cause system failure
! Can you fix this after you’ve fabbed the chip?

tsu th

Q0 Q0

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

Sequential Logic 8

Clock Skew

! Cannot make clock arrive at registers at the same time

! If skew > 0:

! tpd > th + tskew

! Clock skew can cause system failure
! Can you fix this after you’ve fabbed the chip?

tsu th

Q0 Q0

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

Sequential Logic 9

Clock Skew

! If skew < 0:

! tclk > reg tpd + CL tpd + reg tSU + |tskew|
! Can you fix this after fab?

tsu th

Q0 Q1

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

C.L.

Q0

C.L. tpd

Q1

Sequential Logic 10

Clock Skew

! If skew < 0:

! tclk > reg tpd + CL tpd + reg tSU + |tskew|
! Can you fix this after fab?

tsu th

Q0 Q1

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

C.L.

Q0

C.L. tpd

Q1

Sequential Logic 11

Clock Skew

! Correct behavior assumes that all storage elements sample at exactly
the same time

! Not possible in real systems:

! clock driven from some central location

! different wire delay to different points in the circuit

! Problems arise if skew is of the same order as FF contamination delay

! Gets worse as systems get faster (wires don't improve as fast)

! 1) distribute clock signals against the data flow

! 2) wire carrying the clock between two communicating
components should be as short as possible

! 3) try to make all wires from the clock generator be the same
length => clock tree

Sequential Logic 12

Nasty Example

! What can go wrong?

! How can you fix it?

D Q

CLKA

Q(A) Q(B)D Q

CLKA/2D Q

CLKA

Sequential Logic 13

Other Types of Latches and Flip-Flops

! D-FF is ubiquitous
! simplest design technique, minimizes number of wires

preferred in PLDs and FPGAs
good choice for data storage register
edge-triggered has most straightforward timing constraints

! Historically J-K FF was popular
versatile building block, often requires less total logic
two inputs require more wiring and logic
can always be implemented using D-FF

! Level-sensitive latches in special circumstances
popular in VLSI because they can be made very small (4 T)
fundamental building block of all other flip-flop types

two latches make a D-FF

! Preset and clear inputs are highly desirable
! System reset

Sequential Logic 14

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q

CLK

transparent, flow-through
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and flip-flops

Sequential Logic 15

What About External Inputs?

! Internal signals are OK

! Can only change when clock changes

! External signals can change at any time

! Asynchronous inputs

! Truly asynchronous

! Produced by a different clock

! This means register may sample a signal that is changing

! Violates setup/hold time

! What happens?

clkA clkB

Sequential Logic 16

Sampling external inputs

CLKA

Q(A)

CLKB

Q(B) 0 0 1 10/1 ?

clkA clkB

Sequential Logic 17

small, but non-zero probability
that the FF output will get stuck

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1
logic 0

logic 1

Synchronization failure

! Occurs when FF input changes close to clock edge

! the FF may enter a metastable state – neither a logic 0 nor 1 –

! it may stay in this state an indefinite amount of time

! this is not likely in practice but has some probability

Sequential Logic 18

Calculating probability of failure

! For a single synchronizer

Mean-Time Between Failure (MTBF) = exp (tr / τ) / (T0 × f × a)

where a failure occurs if metastability persists beyond time tr

! tr is the resolution time - extra time in clock period for settling
! Tclk - (tpd + TCL + tsetup)

! f is the frequency of the FF clock

! a is the number of asynchronous input changes per second applied to the FF

! T0 and τ are constaints that depend on the FF's electrical characteristics
(e.g., gain or steepness of curve)
! example values are T0 = .4s and τ = 1.5ns

(sensitive to temperature, voltage, cosmic rays, etc.).

! Must add probabilities from all synchronizers in system
1/MTBFsystem = Σ 1/MTBFsynch

Sequential Logic 19

Metastability

! Example
! input changes at 1 MHz
! system clock of 10MHz, flipflop (tpd + tsetup) = 5ns

MTBF = exp(95ns / 1.5ns) / (.4s × 107 × 106) = 25 million years
! if we go to 20MHz then:

MTBF = exp(45ns / 1.5ns) / (.4s × 2×107 × 106) = 1.33 seconds!
! And we’re not even doing any logic!

! Must do the calculations and allow enough time for synchronization

clk

async
input

Sequential Logic 20

What does this circuit do?

! What’s wrong with this?

clkA clkB

Sequential Logic 21

What does this circuit do?

! How much better is this?

! Can you do better?

clkBclkA

Sequential Logic 22

D DQ Q
asynchronous

input
synchronized

input

Clk

Guarding against synchronization failure

! Give the register time to decide
! Probability of failure cannot be reduced to 0, but it can be

reduced

! Slow down the system clock?

! Use very fast technology for synchronizer -> quicker decision?

! Cascade two synchronizers?

Sequential Logic 23

Stretching the Resolution Time

! Also slows the sample rate and transfer rate

D Q

CLKA

D Q

CLKB/2D Q

CLKB

D Q

Sequential Logic 24

Sampling Rate

! How fast does your sample clock need to be?

clkBclkA

A B C

Sequential Logic 25

Sampling Rate

! How fast does your sample clock need to be? f(clkB) > 2f(clkA)

Q(A)

CLKB

Q(B) 0 0 0 00

Q(C) 0 0 0 00

CLKA

D(A)

clkBclkA

A B C

Sequential Logic 26

Sampling Rate

! What if sample clock can’t go faster?

! If input clock is not available, no solution(?)

! If input clock is available (e.g. video codec)

Sequential Logic 27

Increasing sample rate

! The problem is the relativerelativerelativerelative sample rate

! Slow down the input clock!

clkA

CE

CE

clkB

Sequential Logic 28

Another Problem with Asynchronous inputs

! What goes wrong here? (Hint: it’s not a metastability thing)

! What is the fix?

async
input

Sequential Logic 29

More Asynchronous inputs

! What is the problem?

! What is the fix?

async
input

C. L.
2 2

Sequential Logic 30

Important Rule!

! Exactly one register makes the synchronizing decision

async
input

Sequential Logic 31

More Asynchronous inputs

! Can we input asynchronous data values with several bits?

clkBclkA

A B C8 8 8 8

Sequential Logic 32

More Asynchronous inputs

! How can we input asynchronous data values with several bits?

clkBclkA

A B C8 8 8 8

x00/xFF

Q(A)[7:0]

CLKB

x00 x00 xFF xFF

x00 x00 xAA xFFx00

CLKA

Q(B)[7:0]

Q(C)[7:0]

xFFx00

!!

Sequential Logic 33

What Went Wrong?

! Each bit has a different delay

! Wire lengths differ

! Gate thresholds differ

! Driver speeds are different

! Register delays are different
! Rise vs. Fall times

! Clock skews to register bits

! Bottom line – “data skew” is inevitable

! aka Bus Skew

! Longer wires => More skew

! What is the solution??

Sequential Logic 34

Sending Multiple Data Bits

! Must send a “clock” with the data

! Waits until data is stable

! De-skewing delay

! f(f(f(f(clkBclkBclkBclkB) > 2 f() > 2 f() > 2 f() > 2 f(clkAclkAclkAclkA))))

clkB

clkA

8

dataValid

CE

Sequential Logic 35

Sending Multiple Data Bits

! Balancing path delays . . .

! What’s wrong with this solution?

! What’s the right way to do it?

clkB

clkA

8

dataValid

CE

Sequential Logic 36

Sending Multiple Data Bits

! The right way to do it . . .

clkB

clkA

8

dataValid

CE

Sequential Logic 37

Sending Multiple Data Bits

! Slightly different alternative . . .

clkB

clkA

8

dataValid

CE
CE

EN

