Design Abstraction Levels

Complementary Metal-OxideSemiconductor (CMOS) Transistors

NMOS

Source

PMOS

Source

MOS Transistors as Switches

PMOS

Static CMOS

PUN and PDN are Dual Networks

Basic Logic Gates

Example: Full Adder

$$
C_{0}=A B+C_{i}(A+B)
$$

28 transistors

MOSFET

Metal Interconnect

Modern Interconnect

Feedback-Based Latch

- Pro
» Holds data as long as power applied
» Actively drives output: can be made fast
- Con
» Big (5 transistors in this configuration)

Charge-Based Latch

- Pro
" Small: 1 transistor, 1 capacitor (may be gate of transistor)
- Con
» Charge leaks off capacitor ($\sim 1 \mathrm{~ms}$)
» Reads can be destructive and slow for large fan-out

DRAM Trench Capacitor

Array-Structured Memory Architecture

- All cells on selected row sensed simultaneously

RC Switch Model

Signal Propagation (1)

$\mathrm{t}<0$
Vin $=0$

$\mathrm{t}=0$
Vin $=1$

Signal Propagation (2)

$\mathrm{t}=1$
Vin $=0$
$t=2$
Vin $=1$

MOSFET IV Characteristics

NMOS 1.8/1.2

PMOS 5.4/1.2

CMOS Inverter

CMOS Inverter Load Characteristics

CMOS "Load Lines"

Finding CMOS VTC--1

Finding CMOS VTC--2

Finding CMOS VTC--3

CMOS VTC--Spice Results

CMOS Inverter (p:n = 3:1)

Dynamic Power Consumption

Energy/transition $=C_{L} * V_{d d}{ }^{2}$
Power $=$ Energy/transition $* f=\mathrm{C}_{\mathrm{L}} * \mathrm{~V}_{\mathrm{dd}}{ }^{2} * f$

- Not a function of transistor sizes!
- Need to reduce $\mathrm{C}_{\mathrm{L}}, \mathrm{V}_{\mathrm{dd}}$, and f to reduce power.

Dynamic Logic

2 phase operation:

- Precharge
- Evaluatios

