Embedded System
Tools Guide

Embedded Development Kit
EDK 6.2i

UG111 (v3.0) Junel6, 2004

S XILINX®



& XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

A 4

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketlO, SelectlO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-ll Pro, Virtex-1l EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2004 Xilinx, Inc. All Rights Reserved. Except as stated

herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

Embedded System Tools Guide www.xilinx.com UG111 (v3.0) Junel6, 2004
1-800-255-7778


http://www.xilinx.com

Embedded System Tools Guide
UG111 (v3.0) Junel6, 2004

The following table shows the revision history for this document..

Version Revision
06/24/02 1.0 Initial Xilinx EDK (Embedded Processor Development Kit) release.
08/13/02 11 EDK (v3.1) release.
09/02/03 13 EDK 6.1 release.
01/30/04 1.4 EDK 6.2i release
03/12/04 Updated for service pack release.
03/19/04 2.0 Updated for service pack release.
06/16/04 3.0 Updated for service pack release.

UG111 (v3.0) Junel6, 2004

www.xilinx.com
1-800-255-7778

Embedded System Tools Guide


http://www.xilinx.com

Embedded System Tools Guide www.xilinx.com UG111 (v3.0) Junel6, 2004
1-800-255-7778


http://www.xilinx.com

SXILINX®

About This Guide

Preface

Welcome to the Embedded Development Kit. This Kit is designed to provide designers
with a rich set of design tools and a wide selection of standard peripherals required to
build embedded processor systems using MicroBlaze, the industry’s fastest soft processor
solution, and the new and unique feature in Virtex-11 Pro, the IBM ® PowerPC ® CPU.

This guide provides information about the Embedded System Tools (EST) included in the
Embedded Development Kit (EDK). These tools, consisting of processor platform tailoring
utilities, software application development tool, a full featured debug tool chain and

device drivers and libraries, allow the developer to fully exploit the power of MicroBlaze
and Virtex-1l Pro.

Guide Contents

This guide contains the following chapters:

Chapter 1, “Embedded System Tools Architecture”
Chapter 2, “Xilinx Platform Studio (XPS)”

Chapter 3, “Base System Builder”

Chapter 4, “Create/Import Peripheral Wizard”

Chapter 5, “Platform Generator”

Chapter 6, “Simulation Model Generator”

Chapter 7, “Library Generator”

Chapter 8, “Platform Specification Utility”

Chapter 9, “Format Revision Tool”

Chapter 10, “Bitstream Initializer”

Chapter 11, “GNU Compiler Tools”

Chapter 12, “GNU Debugger”

Chapter 13, “Xilinx Microprocessor Debugger (XMD)”
Chapter 14, “Platform Specification Format (PSF)”
Chapter 15, “Microprocessor Hardware Specification (MHS)”
Chapter 16, “Microprocessor Peripheral Description (MPD)”
Chapter 17, “Peripheral Analyze Order (PAO)”

Chapter 18, “Black-Box Definition (BBD)”

Chapter 19, “Microprocessor Software Specification (MSS)”
Chapter 20, “Microprocessor Library Definition (MLD)”
Chapter 21, “Microprocessor Driver Definition (MDD)”

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com

UG111 (v3.0) June 16, 2004

1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Preface: About This Guide

e Chapter 22, “Address Management”

e Chapter 23, “Interrupt Management”

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Resource

Description/URL

EDK Home

Embedded Development Kit home page, FAQ and tips.
http://www.xilinx.com/edk

EDK Examples

A set of complete EDK examples.
http://www.xilinx.com/ise/embedded/edk examples.htm

Tutorials

Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser

Database of Xilinx solution records
http://support.xilinx.com/xInx/xil_ans_browser.jsp

Application Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Sheets

Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/xInx/xweb/xil publications_index.jsp

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips

Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xInx/xil_tt_home.jsp

GNU Manuals

The entire set of GNU manuals
http://www.gnu.org/manual

Conventions

This document uses the following conventions. An example illustrates each convention.

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com/edk
http://www.xilinx.com/edk
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com/edk/edk_examples.htm
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.gnu.org/manual

Conventions

$7XILINX°

Typographical

The following typographical conventions are used in this document:

Convention

Meaning or Use

Example

Courier font

Messages, prompts, and
program files that the system
displays

speed grade: - 100

Couri er bold

Literal commands that you
enter in a syntactical statement

ngdbui | d desi gn_nane

Helvetica bold

Commands that you select
from a menu

File - Open

Keyboard shortcuts

Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbui | d desi gn_nane

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [ ]

An optional entry or
parameter. However, in bus
specifications, such as

bus[ 7: 0] , they are required.

ngdbui | d [ opti on_name]
desi gn_nane

A list of items from which you

Repetitive material that has
been omitted

Braces { } must choose one or more lowpwr ={on] of 1}

. Separates items in a list of _
Vertical bar | choices | owpw ={on]|of f}

. L | OB #1: Name = QQUT’
Vertical ellipsis | OB #2° Name = CLKI N

Horizontal ellipsis . ..

Repetitive material that has
been omitted

al | ow bl ock bl ock_nane
locl loc2 ... locn;

Embedded System Tools Guide (EDK 6.2i)
UG111 (v3.0) June 16, 2004

www.xilinx.com
1-800-255-7778



http://www.xilinx.com

$7 XILINX°

Preface: About This Guide

Online Document

The following conventions are used in this document:

Convention

Meaning or Use

Example

Blue text

Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text

Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text

Hyperlink to a website (URL)

Go to http://www.xilinx.com
for the latest speed files.

www.xilinx.com
1-800-255-7778

Embedded System Tools Guide (EDK 6.2i)

UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Table of Contents

Preface: About This Guide

GUIAE CONTENTS . . oot e 5
AddiItional RESOUICES . ... oo 6
CONVENTIONS . . oot 6
Typographical. . ... ..o 7
ONlINE DOCUMIEBNT . . ..ottt e e e e e e e e 8

Chapter 1. Embedded System Tools Architecture

Tool Architecture OVEIVIEW . ... ... . 11
Tool FIOWS . ... 12
Hardware Platform Creation . ... e 12
Verification Platform Creation. . ... . i i 13
Software Platform Creation .............. i e 13
Software Application Creation and Verification............................... 14
Some Useful Tools . ... . 15
Xilinx Platform Studio. . .. ... o 15
Platform Generator . ......... . i 15
HDL SYNtheSIS . .. oo e 15
Simulation Model Generator ... i 15
Library Generator . ... ... ... ..ot 15
GNU Compiler TOOIS. . ... 16
Software Debugging . .. ... 16
Dumping an Object/Executable File. ...... ... .. ... ... i i i 18
Verifying TooIS SetUup. ... ..o 18
Tools Directory Path . ... ... 18
Xilinx Alliance Software . ... 18

Chapter 2: Xilinx Platform Studio (XPS)

Processes SUPPOIted . ... ... 19
Tools SUPPOrted ... ... 20
Project Management . ... 21
XPS INterface ... ..o 23
Platform Management. . ... 25
Add/Edit Cores (Dialog) . ....ooii 25
Simulation Models . ... ... 25
VW MDD . e 25
VIBW MDD . 25
S/ S tiNGS . . oo 25
Software Application Management. . ... ... ... ...t 26
Flow Tool Settings and Required Files. .............. .. ... .. ... ... .. ...... 29
Tool INVOCAtIoN . .. ... 31
Debugand Simulation ............ .. . 33
Embedded System Tools Guide (EDK 6.2i) www.xilinx.com

UG111 (v3.0) Junel6, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

PBD EditOr. ... 33
PBD Editor Interface . ...... ... 33
Creating the Hardware Block Diagram . ..............c i 35
Editing the Block Diagram . ... ... 40

XPS “NOWINAOW” MOdE .. ... 42
Available Commands . ... 43
Creating A New Empty Project . ... e 43
Creating A New Project With Given MHS. . ....... ... ... . . o i 44
Opening An EXisting Project . ... 44
Reading MSS File . ... oo 44
Saving Files and Project .. ...t 44
Setting Project OpLioNS . .. ...t 44
Executing FlIow Commands .. ...t 45
Adding a Software Application . ............. . . . 46
Deleting a Software Application ............ .. i 46
Adding a Program File to a Software Application .................. ... ........ 47
Deleting a Program File from a Software Application.......................... 47
Setting Options on a Software Application ........... .. ... ... ... .. .. . 47
Settings on Special Software Applications. ........... .. ... . i i 48
Closing A Project and EXIting . .......ooi i 48
Limitations And Workarounds . ............. 49

Chapter 3: Base System Builder

BSB FIOW ... 51
INVOKING BSB ... 51
Selecting A Target DevelopmentBoard . ............. ... i, 52
Selecting A ProCeSSOr. . ..ot 53
Configuring Processor and System Settings ........... ... .o, 54
Selecting External Memoriesand I/O Devices . .........ooiiiiiiiiinan 55
Adding Internal Peripherals. . ........ ... 56
Configuring Software Settings . .. ... 57
Generating the System and Address Map . ...t i 58
OULPUL FIlES . 59
EXItING BOB . . .ot 60

Limitations ... . 61

Chapter 4. Create/Import Peripheral Wizard

InvoKiNg the Wizard . ... e 63
Creating New Peripherals ......... ... . 66
Importing an Existing Peripheral ............. ... ... . . . 80
Organization of generated files............ ... ... . . 92
Limitations ... .. 93

Chapter 5: Platform Generator

Tool ReqQUITEMENTS. . ... o 95
TOOl USA0E. .. 95
Tool OPtiONS. . ... 96
Load Path . ... .. 97
2 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) Junel6, 2004


http://www.xilinx.com

$7XILINX°

OUtPUL FIlES .. e 97
HDL DireCtOry . ..ot e e e e e e e e 97
Implementation DIreCtory . ...... ... e 98
SYNthesisS DIreCIOrY . . ... e e 98

About Memory Generation. ........ ... i 98
BMM POliCY . . .o 99
BMM FIOW . . o 100

Reserved MHS Parameters .. ... 100

Synthesis NetlistCache ............ ... . 101

Current LIMitations . . ... ..o 101

Chapter 6: Simulation Model Generator

OV BIVIBW . . 103
SIMUIAtioN BasiCS . ... ..o 104
Structural SImulation. . ... ... 104
Timing Simulation .. ... . e 104
Simulation Libraries . ... 104
XiliNX Libraries . . ... 104
EDK Library . ... 105
COMPEDKLIB ULty ... ..o e 105
USBOE . . ottt 105
COMPEDKLIB Command Line Examples. ..., 106
Otherdetails . ... e 106
Simulation Models. ... 106
Behavioral Models . . ... ... 106
Structural Models. . ... ... 107
Timing Models .. ... 107
SIMGEN SYNTAX . .. 108
ReqUITEMENTS . . o 108
OPLIONS .ot 108
OutputFiles ... ... .. 110
Memory Initialization. ... 111
VH D L . . o e e 111
Y= 1 oo 111
Simulating Your Design. . ... 111
Current Limitations .. ... o 112

Chapter 7: Library Generator

OVEIVIBW . oot 113
Tool USage. . ... 113
TOOl OPLIONS. . .. 114
Load Path . ... .. 116
OUtpUL FIles ... 118
INClude direCtOrY ... ..o 118
D directory . . . 118
libsre directory .. ... 119
COAE AIrBCIONY . o ottt 119
Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 3

UG111 (v3.0) Junel6, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Libraries and Drivers Generation................... ... . . 119

MDD/MLD and TCl. .. ... e 119
MSS Parameters. . ... 120
DrIVEIS. . 120
Libraries . ... 120
O S 121
Interrupts and Interrupt Controller.............. .. ... .. .. .. .. ... 121
XMDSTUB Peripherals (MicroBlaze Specific) .............................. 122
STDIN and STDOUT Peripherals ............. . i 122

Chapter 8: Platform Specification Utility

TOOl OPLIONS. . .. 123
Overview of the MPD Creation ProCess. ............ouuuiiiiiiinininn, 124
Detailed Use Models for Automatic MPD Creation ......................... 124
Peripherals with a Single Bus Interface ............ ... . .. ... .. .. .. .. ... .. 125
Peripherals with Multiple Bus Interfaces ... ........ ... ... ... i ... 125
Peripherals with TRANSPARENT Bus Interfaces ............................ 126
About Specification of VHDL Attributes ..................... ... ... ... 127
Global IP Core Options . . .. ..o 127
Properties 0N POrtS. . .. ..o 128
Properties on Parameters . . ... .. 129
DRC Checks in PsfUtIlity .......... ... 129
HDL SOUICE ErTOrS. . . oottt e e e e e 129
Attribute Specification EFrors. .. ... ..t 129
Bus Interface Checks ... ... . 129
Verilog Language SUppoOrt ... 130
VHDL Peripheral Definitions ............... . 130
VHDL SYNTAX . . oot 130
Bus Interface Naming Conventions ......... ..., 130
Naming Conventions for VHDL Generics . . ...t 131
Reserved Parameters . ... ..o 132
Signal Naming Conventions .. ...... ...ttt e 134
Global POItS. . .o 135
SIaVe DCR POItS . . . oo 135
Slave LIMB POIES . . ..ot 136
Master OPB POItS . . ..o 137
Slave OPB POItS . ..o 138
Master/SIave OPB POITS . . .. .ot e e 139
Master PLB POItS ... ... 140
Slave PLB POItS. . . 141
Entity-level VHDL Attributes for Automation Support ....................... 143
ADDR SLICE Attribute . ... 145
AWIDTH Attribute . ... . 145
ALERT Attribute .. ... e 145
BUSID AttribULe . .. .o 145
CORE_STATE Attribute ... ... e e e 147
DWIDTH Attribute ... ... 147
HDL AttribULe .. o 147
IMP_NETLIST Attribute . . . ... e 147
IPTYPE Attribute . ... o 148
4 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) Junel6, 2004


http://www.xilinx.com

$7XILINX°

IP_GROUP Attribute . . . ... o 148
NUM_WRITE_ENABLES Attribute . ........ ... . 148
PAY_CORE ALtribute .. ... 149
RUN_NGCBUILD Attribute . ...... ... 149
SPECIAL Attribute. . ... ..o 149
STYLE AribUte . . . oo 149
Generic-level VHDL Attributes for Automation Support ...................... 150
MIN_SIZE ALtribute . . ... 150
ADDRESS and PAIR Attribute ........ ... 151
XRANGE Attribute . ... 151
Signal-level VHDL Attributes for Automation Support ....................... 152
THREE_STATE Attribute . . .. ... e 152
IOB_STATE Attribute .. ... . 153
SIGIS AttribULe . . .. 153
INITIALVAL Attribute . .. ... i 154
BUSIF Attribute .. ... 154
SIGVAL ALtribUte . ... 154

Chapter 9: Format Revision Tool

Revup fromEDK 6.1toEDK 6.2 ... ... .. 155
TO0l USA0E. . oot 155
Limitations .. ... .o 155

Revup from EDK 3.2t0 EDK 6.1 ... ... e 156
TO0l USaQE. . . ottt 156
Limitations .. ... 156

Chapter 10: Bitstream Initializer

OV IV W L . e 157
Tool USage. . ... 157
TOOl OPLIONS. . .. 157

Chapter 11: GNU Compiler Tools

GNU Compiler Framework. . ... . 160
Compiler Usage and OpLioNS. .. ...t 161
USBOE . . oottt 161
QUICK REfBIENCE . .. o e e e 161
Compiler OpLioNS. . . ..o 162
Linker OptioNnsS .. ... e 165
LiNKer SCriPtS . .o 165
Search Paths . ... . 165
File EXTENSIONS . . ... 166
Liraries . . . 167
Compiler INterface . . ... 167
INPUL FIlES . oo 167
OUtPUL FileS .. 167
MicroBlaze GNU Compiler. ... e 168
QUICK REfBIENCE . .. o 168
MicroBlaze Compiler. .. ... 168
MicroBlaze AssembIer. ... ... 170
Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 5

UG111 (v3.0) Junel6, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

MicroBlaze Linker .. ... .. 171
Initialization Files. . ... ... 172
Command Line Arguments .. ... ...t 173
Interrupt Handlers . . ... ... 173
PowerPC GNU Compiler. ... e 174
Compiler OpPtiONS. . . ... 174
LinKer OPtioNS ... o 174
Initialization Files. . ... ... 174

Chapter 12: GNU Debugger

OV IV W . . e 175
Tool USage. . ... 176
TOOl OPLIONS. . .. 176
MicroBlaze GDB Targets. ... 177
GDB Built-in Simulator . . .. ... 178
REMOtE . . . 178
Compiling for Debugging on MicroBlazetargets............ .. ..., 179
POWEIPC Targets. .. ... 179
GUIMOOE . .o e 179
COoNSOIE MOAE . .. oo 179
GDB Command Reference ............ i 180

Chapter 13: Xilinx Microprocessor Debugger (XMD)

XM USage . . oo 182
POWErPC Target. . .. ... 184
PowerPC Target OptioNS . . . ...t 184
PowerPC Target ReqUIremMents .. ...ttt 186
Example debug session with a PowerPCtarget .............. ... ... 187
Example debug session with program running in ISOCM memory and accessing
L@ =T 1) =1 189
Example debug session for special JTAG chain setup (Non-Xilinx devices) ... ... 190
PowerPC Simulator Target . ... e 191
RUNNINg POWErPC 1SS . . .o 191
PowerPC Simulator target options .. ......... i 192
Example debug session for PowerPC ISStarget. ............ ... ... ... ... ..., 192
MicroBlaze MDM Target. . ... ... 193
MDM Target OptioNS . . . .ot 194
MDM Target reqUIremMentS. . . ...ttt 195
Example debug session with a MicroBlaze MDM target....................... 198
Example debug session with 2 MicroBlaze processors and using the JTAG-based UART in
MM L 200
Example debug session with Read Address breakpoints ...................... 201
Example debug session for special JTAG chain setup (Non-Xilinx devices) ... ... 203
MicroBlaze Stub Target ............. .. . 204
MicroBlaze Stub Target Options . ......... it e 204
Stub Target RequUIrements ... ... ... it 206
MicroBlaze Simulator Target............. i 207
MicroBlaze Simulation Target Options . ........... it 207
Simulation StatistiCS. . . ... .. 208
6 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) Junel6, 2004


http://www.xilinx.com

$7XILINX°

Simulator Target Requirements. .. ...t e 208
XMD Internal Tcl Commands ... 208

Chapter 14: Platform Specification Format (PSF)

FIlES 213
BBD - Black Box Definition . ........... o 213
MDD - Microprocessor Driver Definition .......... ... ... ... .. ... . ... 213
MHS - Microprocessor Hardware Specification .............................. 213
MPD - Microprocessor Peripheral Definition ............ ... ... . ... ....... 213
MSS - Microprocessor Software Specification . ................. ... .. ... ...... 214
PAO - Peripheral Analyze Order. ... ... e 214

Fileand IP Naming Rules ... .. 214
Version SChemMe . .. o 214
Version Setting for MHS, and MSS .. .. .. ... 214
Version Setting for BBD, MPD,and PAO. .. ... ... i 214

Load Path . ... .. 215
USING VEISIONS .. oot e 215

Creating UsSer [P ... 215
ISYour IPPure HDL? ... .. 216
Is Your IP Only A Black-Box Netlist? ....... ... ... i 216
Is Your IP A Mixture Of Black-Box Netlists And VHDL or Verilog?............. 216

Chapter 15: Microprocessor Hardware Specification (MHS)

MHS SyNtaX ... 217
COMMENES . .. 218
FOormat . .. 218
MHS EXample. ... 218

Bus INterface. . ... o 220
EXaMIDIE . . o 221

Global Parameter . ... 221
VERSION . . 221

Local Parameter . ... ..o 222
HW VER . oo 222
INSTANCE ... 222

Local Bus Interface. .. ... 222
POSITION . . 222

Global Port . ... . 223
DIR . 223
EDGE . .. 224
LEVEL . . 224
SENSITIVITY o 224
S G . 224
VEC 225

Local POrt. ... 225

Design Considerations .. ...t 225
Defining Memory Size. .. ... o 225
Power Signals (net_gnd/net_Vee) ...t 226
UNCONNECTEA POIS . . .ttt e e e e e e e 226
Constant ASSIgNMENTS. . . ...t 226

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 7

UG111 (v3.0) Junel6, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

CONCALENALION . . . .. oo 226
Internal vs. External Signals . . ... 227
External Interrupt Signals. . ... ... 227

Chapter 16: Microprocessor Peripheral Description (MPD)

MPD SyNtaX ... 229
COMMIBNES . . oo 230
Format . ..o 230
MPD EXample. ... o e 230

BUS INterface. . ... 231
Bus Interface Keywords ... 232
Bus Interface Naming Conventions ...............iiiiiiiiiiiinenn. 233

O INterfaCe . . oo 234
10 Interface KeyWords . ... ... ot e 234

OPtION . . 234
OPtioN KeYWOIAS . . . oot e e 235

Parameter . . ... 242
Parameter KeYWOrdS . . . . ..o e 242
Parameter Naming Conventions . .. ... 247

0 1 1 247
POrt KEYWOIAS . . oot 248
Port Naming CONVENLIONS . ... ..ot e e et 254

Reserved Parameter NamMES. . .. ..ot 259
Reserved Parameters . . ... 260

Reserved Port CONNECLIONS . . . . ...t 264
Clock and ReSEt POItS . . ..ot e 264
SIaVE DCR POItS . . .ot 265
SIAVE LIMB POItS . . .ottt e 265
MaSter OPB POrtS . . . oot 265
SIAVE OPB POItS . ..ot 266
Master PLB POrtS . ... 266
SIaVE PLB POt . . .t 267

Design Considerations ............... .. 267
unconnected PoOrtS. . .. ... 267
Scalable Data path . ... ... 268
Interrupt SIgNals. . . . ... 268
3-state (INOUL) Signals . ... ... 269

Chapter 17: Peripheral Analyze Order (PAO)

PAO FOormat. . ... 271
COMMIBNES . oo e 271
PAO EXamMpPIe . .. 271

Chapter 18: Black-Box Definition (BBD)

BBD Format. . ... o 273
COMIMIBNES . ot e 273
I £ 273
BBD EXamples .. ... 274
8 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) Junel6, 2004


http://www.xilinx.com

$7XILINX°

File Selection Without Options ........ ... .. i e 274
Multiple File Selections Without Options . ........... ... ... . .. 274
File Selection With Options ... ... e 274

Chapter 19: Microprocessor Software Specification (MSS)

OVEIVIBW . o ot 275
MSS FOrmat. .. ... 275
KEYWOIAS . . 275
ReqUITEMENTS . . o 276
MSS EXamMple . .. 276
Global Parameters . .......... . 277
PSF VerSION . . 278
Parameter INT_HANDLER .. ... . e e 278
Instance Specific Parameters ... 278
OS, Driver, Library and Processor Block Parameters. ......................... 278
MDD/MLD Specific Parameters . . ... 281
OS Specific Parameters . ... ... o 281
Processor Specific Parameters . ... 282

Chapter 20: Microprocessor Library Definition (MLD)

OVEIVIBW . o ot 285
REQUITEMENTS . . . 285
Library Definition Files . ... .. 285
MLD Format Specification ............. ... .. 286
MLD File Format Specification .......... ... .. . . i 286
Tcl File Format Specification .......... ... i 286
EXample . 287
Example MLD file foralibrary ...... ... ... . 287
Example Tcl Fileofalibrary........ ... 288
Example MLD fileforan OS . ... ... . 289
Example TclFileof an OS . . ... . 289
MLD Parameter Description Section.................... ... ... ... ... ... ... 290
CONVENTIONS . . oo e 290
COMMENTS .« ..o 290
OS/Library Definition. ... ... . 290
KEYWOIAS . 291
Design Rule Check (DRC) Section. ........ ...t 293
Library Generation (Generate) Section. ................ ... ... ... ... ... .... 294

Chapter 21: Microprocessor Driver Definition (MDD)

OVBIVIBW . . oo 295
ReqQUITEMENTS . . . 295
Driver Definition Files ... 295
MDD Format Specification............... . i 296

MDD File Format Specification .............. . i 296

Tcl File Format Specification .......... . . i 296
EXamMpPle .. 296

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 9

UG111 (v3.0) Junel6, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

MDD file example . ... .. 297
Example TclFile . ... o 298
MDD Parameter DesCription ........ ... i 299
CONVENLIONS . .o 299
COMIMENTS « . .o e e e 299
Driver Definition .. ... .. 299
KEYWOIAS . . 300
Design Rule Check (DRC) Section................ ... ... ... . i i, 302
Driver Generation Section (Generate) ..............coi it 302

Chapter 22: Address Management

MiCroBlaze ProCeSSOr. . .. ...t 305
Programs and MemOTIY . . ... it 305
Current Address Space RestriCtions . ... 305
Memory Speeds and LatenCies. . ... ...t 307
System AdAress SPaCE. . .. oottt 307
Default User Address SPace . . . ..o vt e 308
Advanced User AddreSS SPaCe .. ... oottt 308
Object-file SECIONS . . ... o 309
Minimal Linker SCript . .. ..o o 311
LiNKer SCriPt . ..o 311

POWEIPC ProCeSSOr. .. ... 314
Programs and MEMOKY . ... ..ot e 314
Current Address Space Restrictions . ... ... 315
Advanced User AdAress SPace . .. .. .ov it 316
LinKer SCript . .o 316
Minimal Linker SCript . ... ... 317

Chapter 23: Interrupt Management

Interrupt Management . ... . 321
MicroBlaze Interrupt Management ................. i, 321
Interrupt Controller Peripheral ....... ... ... . . 322
Peripheral with an Interrupt port .......... . .. . i 324
External Interrupt POrt . ... ... 325
Interrupt Handlers . . ... .. 326
Interrupt vector Table in MicroBlaze ........... ... . ... . i i, 326
Interrupt Routines in MicroBlaze ......... ... .. ... . . 326
PowerPC Interrupt Management . ............ . 326
Libgen Customization. ......... ... i 328
XPAraME IS, N L o 328
Example Systems for MicroBlaze ...............cc i 328
System without Interrupt Controller (Single Interrupt Signal). . ................ 328
System with an Interrupt Controller (One or More Interrupt Signals) ........... 332
Example Systems for PowerPC ... ... ... .. .. .. . 336
System without Interrupt Controller (Single Interrupt Signal). . ................ 336
System with an Interrupt Controller (One or More Interrupt Signals) ........... 341
10 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) Junel6, 2004


http://www.xilinx.com

2 XILINX®
Chapter 1

Embedded System Tools Architecture

This chapter describes the Embedded System Tools (EST) architecture and flows for the
Xilinx embedded processors, PowerPC 405 and MicroBlaze. The chapter contains the
following sections.

e “Tool Architecture Overview”
e “Tool Flows”
e  “Some Useful Tools”

“Verifying Tools Setup”

Tool Architecture Overview

Figure 1-1 depicts the embedded software tool architecture. Multiple tools based on a
common framework allow the user to design the complete embedded system. System
design consists of the creation of the hardware and software components of the embedded
processor system, and optionally, a verification or simulation component as well. The
hardware component consists of an automatically generated hardware platform that can
be optionally extended to include other hardware functionality specified by the user. The
software component of the design consists of the software platform generated by the tools,
along with the user designed application software. The verification component consists of
automatically generated simulation models targeted to a specific simulator, based on the
hardware and software components.

| HW Spec Ed. I //\\ I SW Spec Ed. |
| HW Plat. Gen I I SW Plat. Gen. |
Sim Spec Ed. |<—| |=—| SW Source Ed.

[Sim ot Gen J+—+{ XPS |+—~[SiCompers |
I o I S ey
| ISE - HW Impl. I XMD

| iMPACT I \ / I Data2BMEM |

X10087

Figure 1-1: Embedded Software Tool Architecture

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 11
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 1: Embedded System Tools Architecture

Tool Flows

A typical embedded system design project involves the following phases:

e hardware platform creation,

e hardware platform verification (simulation),

e software platform creation,

e software application creation, and

o software verification (debugging).

Xilinx provides tools to assist in all the above design phases. These tools play together with

other, third-party tools such as simulators and text editors that may be used by the
designers.

Hardware Platform Creation

Hardware platform creation is depicted in Figure 1-2.

MHS File
| HW Spec Ed. I

XPS, WIZARDS

MHS File
HW Plat. Gen | XPS
Platgen EDIF, NGC,
VHD,V,BMM

X10088
Figure 1-2: Hardware Platform Creation

The hardware platform is defined by the MHS (Microprocessor Hardware Specification)
file (see Chapter 15, “Microprocessor Hardware Specification (MHS)”’for more
information). The hardware platform consists of one or more processors and peripherals
connected to the processor buses. Several useful peripherals are usually supplied by
Xilinx, along with the EDK tools. Users can define their own peripherals and include them
in the MHS by following the guidelines in Chapter 14, “Platform Specification Format
(PSF)”. The MHS file is a simple text file and any text editor can be used to create this file.
The XPS tool provides graphical means to create the MHS file.

The MHS file defines the system architecture, peripherals and embedded processors. The
MHS file also defines the connectivity of the system, the address map of each peripheral in
the system and configurable options for each peripheral. Multiple processor instances
connected to one or more peripherals through one or more buses and bridges can also be
specified in the MHS.

The Platform Generator tool (PlatGen) creates the hardware platform using the MHS file as
input. PlatGen creates netlist files in various formats (NGC, EDIF), as well as support files
for downstream tools, and top level HDL wrappers to allow users to add other
components to the automatically generated hardware platform. See Chapter 5, “Platform
Generator,” for more information.

12

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Tool Flows

$7XILINX°

Note: After running PlatGen, FPGA implementation tools (ISE) are run to complete the
implementation of the hardware. Typically, XPS spawns off the ProjNav front end for the
implementation tools, allowing full control over the implementation. See ISE documentation for more
info on the ISE tools. At the end of the ISE flow, a bitstream is generated to configure the FPGA. This
bitstream includes initialization information for BRAM memories on the FPGA chip. If user code or
data is required to be placed on these memories at startup time, the Data2MEM tool in the ISE toolset
is used to update the bitstream with code/data information obtained from the user’s executable files,
which are generated at the end of the “Software Application Creation and Verification” flow.

Verification Platform Creation

Software

The verification platform is based on the hardware platform. The verification specification
allows the user to specify a simulation model for each processor, peripheral or other
module in the hardware platform. The MHS file is processed by the Simgen tool to create
simulation files (VHDL, Verilog or various compiled models) along with some command
files for specific simulators supported by the tool. See Chapter 6, “Simulation Model
Generator” for more information. As in the case of the hardware platform, these
simulation files may be edited by the user to add other components to the automatically
generated verification platform. The entire process of generating the verification platform
is depicted in Figure 1-3. If the software application that runs on the hardware platform is
available in executable format, it can be used to initialize memories in the verification
platform. Details of this process are provided in later chapters.

- MHS File
| Sim Spec Ed. I

XPS GUI
MHS, .elf
Sim Plat. Gen | XPS
Simgen .vhd, .v for sim

X10089

Figure 1-3: Verification Platform

Platform Creation

The software platform is defined by the MSS (Microprocessor Software Specification) file
(see Chapter 19, “Microprocessor Software Specification (MSS)” for more information).
The MSS file defines driver and library customization parameters for peripherals,
processor customization parameters, standard input/output devices, interrupt handler
routines, and other related software features. The MSS file is a simple text file and any text
editor can be used to create this file. The XPS tool (see Chapter 2, “Xilinx Platform Studio
(XPS)” for more information) provides a graphical user interface for creating the MSS file.

The MSS file is an input to the Library Generator tool (LibGen) for customization of
drivers, libraries and interrupt handlers. See Chapter 7, “Library Generator” for more
information. The entire process of creating the software platform is shown in Figure 1-4.

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 13
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 1: Embedded System Tools Architecture

MSS File
| SW Spec Ed. I

Emacs, XPS MSS Editor

MSS, MHS,
lib/*.c, lib/*.h

SW Plat. Gen | XPS
libgen libc.a, libXil.a

X9881

Figure 1-4: Software Platform

Software Application Creation and Verification

The software application is the code that runs on the hardware and software platforms.
The source code for the application is written in a high level language such as C or C++, or
in assembly language. XPS provides a source editor for creating these files, but any other
text editor may be used here. Once the source files are created, they are compiled and
linked to generate executable files in the ELF (Executable and Link Format) format. GNU
compiler tools (see Chapter 11, “GNU Compiler Tools” for more information) for PowerPC
and MicroBlaze are used by default but other compiler tools that support the specific
processors used in the hardware platform may be used as well. XMD and the GNU
debugger (GDB) are used together to debug the software application. XMD provides an
instruction set simulator, and optionally connects to a working hardware platform to allow
GDB to run the user application. This entire process is depicted in Figure 1-5. See Chapter
13, “Xilinx Microprocessor Debugger (XMD)” for more information on XMD and Chapter
12, “GNU Debugger” for more information on GDB.

.c and .h files
| SW Source Ed. I

Emacs, XPS Source Editor

.c and .h files
libc.a, libXil.a
SW Compilers | XPS
Mb-gcce, ppc-gce .elf file
.c and .h files
.elf file

SW Debuggers
Mb-gdb, ppc-gdb

|
|
X9882

Figure 1-5: Software Application Creation and Verification

14

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Some Useful Tools ST XILINX®

Some Useful Tools

Xilinx Platform Studio

The Xilinx Platform Studio (XPS) tool provides a GUI for creating the MHS and MSS files
for the hardware and software flow. XPS also provides source file editor capability and
project and process management capability. XPS is used for managing the complete tool
flow, that is, both hardware and software implementation flows. Please see Chapter 2,
“Xilinx Platform Studio (XPS)” for more information.

Platform Generator

The embedded processor system in the form of hardware netlists (HDL and EDIF files) is
customized and generated by the Platform Generator (PlatGen).

See Chapter 5, “Platform Generator” for more information.

HDL Synthesis

PlatGen generates hierarchal NGC netlists in the default mode. This means that each
instance of a peripheral in the MHS file is synthesized. The default mode leaves the top-
level HDL file untouched allowing any synthesis tool to be used. Currently, Platform
Generator only supports XST (Xilinx Synthesis Technology).

ISE XST

If Platform Generator is run in the default mode, a synthesis script file for XST is created.
This script can be executed under XST using the following command:

xst -ifn system scr

Simulation Model Generator

The Simulation Platform Generation tool (simgen) generates and configures various
simulation models for the hardware. It takes a Microprocessor Hardware Specification
(MHS) file as input.

Note: Previous versions of Simgen used a separate specification file called the MVS file. MVS files
are not used in this version of the software.

See Chapter 6, “Simulation Model Generator” for details.

Library Generator

XPS calls the Library Generator tool for configuring the software flow.

The Library Generator (LibGen) tool configures libraries, device drivers, file systems and
interrupt handlers for the embedded processor system. The input to LibGen is an MSS file.

Please see Chapter 7, “Library Generator” for more information. For more information on
Libraries and Device Drivers please refer to the “Xilinx Microkernel (XMK)” chapter in the
EDK OS and Libraries Reference Guide and the “Device Driver Programmer Guide” chapter
in the Processor IP Reference Guide.

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 15
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

ST XILINX® Chapter 1: Embedded System Tools Architecture

GNU Compiler Tools

XPS calls GNU compiler tools for compiling and linking application executables for each
processor in the system.

Given a set of C source files, a Microprocessor executable is created as follows.

MicroBlaze
nb-gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the
MicroBlaze processor. The output executable is in a.out. The -o flag can be used to specify
a different file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, mb-gcc -help can be run on the command
line. See Chapter 11, “GNU Compiler Tools” for more information.

PowerPC

power pc-eabi -gcc filel.c file2.c

This command compiles and links the files into an executable that can run on the PowerPC
processor. The output executable is in a.out. The -o flag can be used to specify a different
file name for the output file.

In order to initialize memories in the hardware bitstream with this executable, the file
name should have an elf extension.

For further information on compiler options, powerpc-eabi-gcc -help can be run on the
command line. See Chapter 11, “GNU Compiler Tools” for more information.
Compiling with Optimization

Once you are satisfied that your program is correct, recompile your program with
optimization turned on. This will reduce the size of your executable, and reduce the
number of cycles it needs to execute. This is achieved by the following:

nb-gcc -3 filel.c file2.c

Setting the Stack Size
By default, the EDK tools build the executable with a default stack size of 0x100 (256) bytes.

The stack size can be set at compile time by using:
nmb-gcc filel.c file2.c -W, defsym-W, STACK_ S| ZE=0x400
This will set the stack size to 0x400 (1024) bytes.

Software Debugging

You can debug your program in software (using a simulator, available for MicroBlaze
only), or on a board which has a Xilinx FPGA loaded with your hardware bitstream. See
Chapter 13, “Xilinx Microprocessor Debugger (XMD),” for more information.

16 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Some Useful Tools ST XILINX®

Debugging Using Hardware: software intrusive

Create your application executable using the compiler. For example
nb-gcc -g -xl -node-xmdstub filel.c file2.c

This command creates the Microprocessor executable a.out, linked with the C runtime
library crtl.o and starting at physical address 0x400, and with debugging information that
can be read by mb-gdb (or powerpc-eabi-gdb if compilation was done for PowerPC).

If you want to debug your code using a board, you must specify the DEFAULT _INIT
parameter for that processor to XMDSTUB in MSS file. This creates a Data2MEM script
(run_download) file that initializes the Local Memory (LM) with the xmdst ub executable.
Next, load the bitstream representing your design onto your FPGA. Refer to Chapter 13,
“Xilinx Microprocessor Debugger (XMD),” and Chapter 7, “Library Generator,” for more
information.

Start the xmd server in a new window with the following command:
xmd

Connect to use stub target GDB. Please see Chapter 13, “Xilinx Microprocessor Debugger
(XMD),” for more information.

Load the program in mb-gdb using the command:
nb- gdb a. out
Click on the “Run” icon and in the mb-gdb Target Selection dialog, choose
- Target: Remote/TCP
- Hostname: localhost
- Port: 1234
Now, mb-gdb’s Insight GUI can be used to debug the program.

Debugging Using A Simulator: non-intrusive

If you want to debug your code using a simulator, compile programs using the following
command:

nmb-gcc -g filel.c file2.c

This command creates the MicroBlaze executable file, a.out, with debugging
information that can be accessed by mb-gdb. For PowerPC, the compiler used is
powerpc-eabi-gcc.

Xilinx EDK provides two ways to debug programs in simulation.
1. Cycle-accurate simulator in XMD:
Start xmd server in a new window with the following command:
xmd
Connect using sim target. Please see the XMD documentation for more information.

Loading and debugging the program in mb-gdb is done the same way as for xmd in
hardware mode described above.

This is the preferred mechanism to debug user programs in simulation

2. Simple ISA simulator in mb-gdb:

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 17
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 1: Embedded System Tools Architecture

The xmd server is not needed in this mode. After loading the program in mb-gdb,

Click on the “Run” icon and in the mb-gdb Target Selection dialog, choose
“Simulator”.

Use this mechanism only if your program does not attempt to access any peripherals
(not even via a print call).

Dumping an Object/Executable File

The mb-objdump utility lets you see the contents of an object (.0) or executable (.out) file.

To see your symbol table, the size of your file, and the names/sizes of the sections in the
file, run the following:

nb- obj dunmp -x a. out

To see a listing of the (assembly) code in your object or executable file, use
nb- obj dunp -d a. out

To get a list of other options, use the following command:

nb- obj dunp --help

Verifying Tools Setup

The environment variable XI LI NX_EDK, needs to be set at the level of the hierarchy where
the directories doc, hw, and bin reside.

Tools Directory Path

Ensure that the GNU tools are in your path.

For Solaris

Check the executable search path. Your path must include the following:
o  ${XILINX_EDK}/gnu/microblaze/sol/bin

o  ${XILINX_EDK}/gnu/powerpc-eabi/sol/bin

e ${XILINX_EDK}/bin/sol

For PC

Check the executable search path.
o %XILINX_EDK%\gnu\microblaze\nt\bin

o %XILINX_EDK%\gnu\powerpc-eabi\nt\bin
o %XILINX_EDK%\bin\nt

Xilinx Alliance Software

The system should be set up to use the Xilinx Development System. Please verify that the
system is properly configured. Consult release notes and installation notes included in the

Xilinx ISE software package for more information. The EDK 3.2 release supports Xilinx ISE
5.2 Tools.

18

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

2 XILINX®
Chapter 2

Xilinx Platform Studio (XPS)

This chapter describes the Xilinx Platform Studio (XPS) IDE for the Xilinx Embedded
Processors, MicroBlaze and PowerPC.

Xilinx Platform Studio (XPS) provides an integrated environment for creating the software
and hardware specification flows for an Embedded Processor system. It also provides an
editor and a project management interface to create and edit source code. XPS offers
customization of tool flow configuration options. It also provides a graphical system editor
for connection of processors, peripherals and buses. XPS is available on both Windows and
Solaris platforms. There is also a batch mode invocation of XPS available.

This chapter contains the following sections.

e  “Processes Supported”

e “Tools Supported”

e “Project Management”

o  “XPS Interface”

e “Platform Management”

e “Software Application Management”
e “Flow Tool Settings and Required Files”
e “Tool Invocation”

e “Debug and Simulation”

e “PBD Editor”

e “XPS “No Window” Mode”

Processes Supported

XPS supports the creation of the MHS (refer to Chapter 15, “Microprocessor Hardware
Specification (MHS)”) and MSS file, (refer to Chapter 19, “Microprocessor Software
Specification (MSS)”) files needed for embedded tools flow. The MVS file used in EDK 3.2
has been discontinued and that information is stored in XPS project files. XPS also aids
users in creating an MHS (refer to Chapter 15, “Microprocessor Hardware Specification
(MHS)”) through a dialog based editor and bus connection matrix, or through a graphical
block diagram editor (referred to as the Platform Block Diagram editor). It supports
customization of software libraries, drivers, interrupt handlers and compilation of user
programs. Source management of C source files and header files for user applications is
also provided by XPS. Users can also choose the simulation mode for the complete system.
Users can begin a project by either importing an existing MHS file or by starting with an
empty MHS file and then adding cores to it. It performs process management and
dependency checking between the hardware, software and simulation tool flows by

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 19
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

CUser Program Sources>—>

calling the tools in the correct order using the makefile mechanism. Figure 2-1 provides a

detailed view of processes supported by XPS.

Project
Management

Make File

MSS
Engine

|
: |
Program '
Process | |
Sources
Management Management : :
: Platgen Libgen :
| |
| |
| i | |
: Implementation Compiler |
| Tools |
|
I |
| i \ |
| |
| Data2MEM |
e __
X10125
Figure 2-1: XPS Process
Tools Supported
Table 2-1 describes the tools that are supported in the XPS.
Table 2-1: Tools supported in XPS
Tool Function Reference/Notes

Library Generator
(LibGen)

Customizes software libraries, drivers and interrupt
handlers

The Library Generator
Documentation

GNU Compiler Tools

Preprocess, compile, assemble and link programs

GNU tools Documentation

Platform Generator
(PlatGen)

Allows user to customize various options. Runs
platgen with the options and the MHS file

The Platform Generator
Document

Simulation Model
Generator (SimGen)

Generates the hardware simulation model and the
compilation script file for the complete system.

The Simulation Model
Generator

Makefile Generates a Makefile, which provides targets to run Uses gmake on Solaris.
various hardware and software flow tools.
System ACE Generates SystemACE file Not supported on Solaris
20 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778

UG111 (v3.0) June 16, 2004



http://www.xilinx.com

Project Management

$7XILINX°

Table 2-1: Tools supported in XPS

Tool Function Reference/Notes
XMD Opens an XMD terminal for the user for on-board XMD Documentation
debug.
Project Navigator Export | Export and Import design to Project Navigator for Flow is an alternative to the
and Import synthesis and implementation of design. XFlow mechanism in XPS.
Features

XPS has the following features

e Adding cores, editing core parameters, and making bus and signal connections to
generate a Microprocessor Hardware Specification (MHS)

e Generation and modification of the Microprocessor Software Specification (MSS)
e Support for all the tools described in Table 2-1.

e Graphical Block Diagram View and Editor.

e Multiple User Software Applications support

e Project management

e Process and tool flow dependency management

Project Management

Project information is saved in a Xilinx Microprocessor Project (XMP) file. An XMP file

consists of the location of the MHS file, the MSS file, and the C source and header files that
need to be compiled into an executable for a processor. The project also includes the FPGA
architecture family and the device type for which the hardware tool flow needs to be run.

Creating A New Project

A New Project is created using the New Project menu option in the Project submenu of
the main menu. The Base System Builder Wizard in the New Project menu can be used
to invoke the wizard to create a basic system. Please refer to Chapter 3, “Base System
Builder” for more information. The Platform Studio option can be used to create a new
project using XPS. The New Project toolbar button can also be used.

For creating a new project, users need to specify the location of the xmp file. The name of
the xmp file is take to be the project name and the directory where the xmp file resides is
considered to be the project directory. All tools are invoked from the project directory. All
relative paths are assumed to be relative to the project directory. Optionally, users can also
specify an MHS file to be used for the project if the project is created using Platform Studio.
If the specified MHS file does not exist in the project directory or does not have same name
as the project name, XPS copies it into the project directory with same base name as the
project name. XPS always modifies the local copy of the MHS and never refers to the
original MHS.

The target architecture must be set before running any tool. However, choosing the device
size, the package and the speed grade can be deferred till implementation of the design.
These options can also be set/changed later in the Set Project Options dialog box in
Options — Project Options menu.

Users must specify all Search Path directories before loading the project if

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 21
UG111 (v3.0) June 16, 2004 1-800-255-7778



http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

e The MHS uses a peripheral which is not present either in the Xilinx EDK installation
area or in pcores directory of the XPS project directory.

e The MSS uses a driver which is not present either in the Xilinx EDK installation area
or in the drivers directory of the XPS project directory.

The concept of a Search Path directory, and its subdirectory structure is explained in detail
in Platform Generator and Library Generator chapters. This corresponds to the -Ip option
of the tools. Please note that all the tools automatically look into the pcores, and drivers
directories in the project directory and that the project directory itself should not be
specified as the Search Path. Multiple directories can be specified as part of search path by
specifying a semicolon (;) separated list of directories.

Opening An Existing Project

An existing XPS project can be opened by using the Open Project menu option (File
menu) or using the Open Project button on the toolbar and specifying the existing XMP file
corresponding to that project.

New source files and header files can be created, added, and deleted as described in the
Source Code Management section of this chapter.

XPS does not allow multiple projects to be open simultaneously. Any open project must be
closed before another project can be opened.

Getting Help

The main menu in XPS has a Help menu item. A link the EDK documentation is provided
in the Help submenu. The EDK Examples menu item is a link to the EDK examples web

page at Xilinx. Many example designs are updated in this web site for users to download
and use.

22

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

XPS Interface ST XILINX®

XPS Interface

:Qg'XiIinx Platform Studio - C:\Data‘newbsb’,

File Edit View Project Tools Options Window Help

NEHgs [seeocll|aanpgan||scszam |40
FEBED| SR M @R b x]] |

=

System I.ﬂ.pplicaﬁons ]Opﬁons ]Symhols I

| Right Click for Options

=] System BSP

Elm microblaze_0

- Diiver cpu_v1_00_a

Debug Peripheral: debug_modu
05: standalone_v1_00_a
[ Generated Header: microblaze_
= mb_opt

- debug_madule

..... imb

..... dimb

-3l dimb_cnth

- 4B imb_cntr

- Imb_tram -
= RS5232

- LEDs_4Bit

[]--I LED_7Segment

[

[

-

fral

#-JBF Push_Buttons_1Bit
+-JF DIP_Switches_SBit
EI@ Project Files

----- El MHS Fils: system.mbs _Ij
IR = "

x| [Conzole Log)
o Project Opened.

[ 4[R2 output £ wamings J Erors [
Ready |

Figure 2-2: XPS (Xilinx Platform Studio)

Figure 2-2 shows a screenshot of XPS. XPS opens three main windows by default.

Editor Workspace

The main editor workspace appears on the right in XPS in Figure 2-2. The workspace
opens PBD (Platform Block Diagram) file and allows graphical editing of the system. The
main workspace also functions as a C source and header file editor of XPS. Users can also
view and edit other text files in the main window. Any number of text files can be opened
simultaneously in the XPS main window. The PBD file can be opened by double clicking
on the PBD file in the system tree view, or through the Project — View Schematic menu
item.

The PBD editor is described in more detail later in this chapter (see “PBD Editor,” page 33).

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 23
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

ST XILINX® Chapter 2: Xilinx Platform Studio (XPS)

System Tab

This tab is one of the four tabs that appear on the left in the XPS window in Figure 2-2. The
system tab shows the system in a tree format. There are three sub-trees in this view:

e The System BSP tree shows system components (various cores) by their instance
names. Each core can have its own sub-tree which displays information
corresponding to that instance (for example base address and high address). Source
and header files corresponding to a processor are listed in the sub-tree for that
processor instance.

e The Project Files tree shows the MHS. MSS, PBD, UCF and other files corresponding
to the project. Users can double-click on any of the file names to open it in the XPS
main window. Some of these files must be created by the user in order to implement
the design.

e The Project Options tree shows the current value set for various project options.
Users can double-click or do a Right-click on any of the fields shown in this tree to
bring up the Set Project Options dialog box.

Applications Tab

This tab shows all user software application projects. Users can create a number of
software application projects that are associated with the processors in their design.

A software application project consists of a unique project name, a set of source and header
files that the users can create to design their application. The source files can be built into
executables (one executable per application project) that can be downloaded onto the
FPGA.

If users have multiple applications, but the current design is only going to require a subset
of those applications, they should mark the other applications as “Inactive”. XPS engine
will ignore all the “Inactive” applications. This enables users to preserve software
applications and does not force them from deleting those applications.

Each active application project can be specified with a set of compiler options. A right click
on the application projects tree view brings up a context menu. The menu items can be
invoked to set compiler options, view files, open files, associate different processors with
the project and so on. Each project can also be marked for initialize BRAMs. If a user
application resides completely in BRAM memory and the user wants to download that
ELF file as part of the bitstream, then those applications must be “Marked to initialize
BRAMSs”. XPS will use data2mem to update the bitstream with those ELF files.

For every processor in the design, an application project called <processor
instance>_bootloop is created by default. This is a predefined bootloop that can be
downloaded to the BRAMS so that the processor is in a valid state on wakeup. A View
Source on the bootloop project will open the source file with more comments explaining
the importance of the bootloop. For more information please see the Software Application
Management Section of this chapter.

Transcript Window (Output)

The transcript window is the bottom window in Figure 2-2. This window acts as a console
for output, warning and error messages from XPS and from other tools invoked by XPS.

24 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Platform Management ST XILINX®

Platform Management

In order to change the system specification, software settings, and simulation options, XPS
supports the following features and processes.

Add/Edit Cores (Dialog)

A Right click on System BSP item in the System View tab gives a menu option to Add
Cores (dialog) to the system. Selecting it brings up a tabbed dialog box that lists all the
cores which can be instantiated in the design. Multiple cores can be selected at a time for
adding to the design by using the ‘Shift’ or ‘Ctrl’ key. The tabs can be used to add and
connect buses, connect BRAMs to BRAM controllers, add ports and connect using net
names and set parameters on cores. Please refer to the MPD and MHS document for
parameter information. Also the IP documentation includes parameters that can be
changed for each IP.

Simulation Models

A Right click on System BSP item in the System View tab gives a menu option to set the
Simulation Model for the system. User can choose between Behavioral, Structural, and
Timing modes of simulation. The currently selected model has a check mark against it.
This information is stored in XMP file.

View MPD

Right click on an instance name give users the option to View MPD for that core. If selected,
the MPD file for that core is opened in the main window. If the MPD file is already open,
focus is set on the file. MPD files are opened in read-only mode and can not be edited.

View MDD

Right click on an instance name gives users the option to View MDD for driver assigned to
that core instance. This option is disabled if no driver is assigned to that core. If selected,
the MDD file for that core’s driver is opened in the main window. If the MDD file is already
open, focus is set on the file. MDD files are opened in read-only mode and can not be
edited.

S/W Settings

In the System BSP tree, a double click on an instance name opens a dialog window
displaying configurable software platform options for all peripherals. This window can
also be brought up by doing a Right click on peripheral instance name and choosing the
menu item S/W Settings. This dialog has multiple tabs and is used to set all the software
platform related options in the design. The tabs and their significance are detailed as
follows:

Software Platform

This tab shows three tables: Drivers, Libraries and Kernel and Operating Systems.

The Drivers table displays peripherals used in the design and users can assign drivers for
these peripherals. Drivers may already be assigned by default, and users have the ability to
change the default drivers.

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 25
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

The Libraries table shows all the libraries that are included in the EDK and each library can
be included in the design by checking the Use column.

The Kernel and OS table can be used to select an OS for the processor system in the design.
A standalone OS is selected by default.

Please see the Microprocessor Software Specification (MSS) for more information.

Processor and Driver Parameters

This tab shows two tables, Processor Parameters and Driver Parameters. These tables can
be used to specify values for the parameters associated with the processors or peripheral
drivers in the design. The driver table also displays interrupt handler parameter if the
peripheral using the driver is connected to an interrupt port. The name of the interrupt
handling routine can be specified for any peripheral interrupt signal. If the peripheral has
no interrupt port, or if those interrupt port(s) are not connected to any signal in the MHS
file, then this parameter does not show up. Please see the Microprocessor Driver Definition
(MDD) chapter for more information.

Library and O/S Parameters

This tab shows a list of all configurable library and Kernel/OS parameters for all the
libraries and OS in the design. Please see the Microprocessor Library Definition (MLD) and
the Libraries guide for more information.

Software Application Management

MSS file specifies the software platform for the embedded system design. This includes the
OS, drivers for IPs and other libraries. Multiple applications can be run on a software
platform. XPS allows users to specify multiple application projects. This is specified in the
Applications tab. Each application is associated with a processor instance that executes the
application. Users must specify a unique name for each application project. An application
project has a list of C source and header files associated with it. Users can also specify
compiler options for each application. All the source files for a processor are compiled
using the compiler specified for that processor in the SW platform settings for that
processor. XPS has an integrated editor for viewing and editing C source and header files
of the user program.

Adding Files

Files can be added to a active software application by clicking the right mouse button on
the Sources or Headers item in the application project. The same operation can be
accomplished by using the Project — Add Program Sources menu item in the Main
menu. Multiple files are added by pressing the control key and using arrow keys (or the
mouse) to select in the file selection dialog. XPS adds files to Sources or Headers subtree
depending upon the file extension. All directories where the header files are present are
automatically added to the Include Search Path compiler option.

Deleting Files from Project

Any file can be deleted from a software application by selecting the file in the Project View
window then clicking the right mouse button on the item and choosing Delete File. Note
that the file does not get physically deleted from the disk. It is just removed from the list of
files to be compiled to generate the executable for that application.

26

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Software Application Management ST XILINX®

Editing Files

Double clicking on the source or header file in the Project View window opens the file for
editing. The editor supports basic editing functions such as cut, paste, copy and
search/replace. The editor highlights basic source code syntax. It also supports file
management and printing functions such as saving, printing, and print previews.

Mark Application for downloading to BRAMs

Active Software application ELF files which reside on FPGA’s BRAM memory need to
marked for downloading into BRAMSs. This can be done by right clicking on the software
application and selecting “Mark for Download” menu item. Similarly, you can also
deselect the application for downloading to BRAMs. If an application is marked for
BRAMSs, XPS passes these applications to the data2mem utility which initializes the
bitstream with BRAM information from the ELF files. XPS also passes these ELF files to
simgen to create appropriately initialized simulation models. By default, a software
application is assumed to be using BRAMSs. Note that by marking an application for
download to BRAMSs, no process gets invoked, but rather a flag is set up to indicate that the
application has to be downloaded at the proper step in the flow.

Application to be compiled outside XPS environment

Sometimes, users want to compile their application outside XPS environment (e.g. in
VxWorks, Eclipse etc.), but they might want XPS to be aware of the ELF file. In such cases,
they should create an application project and specify the ELF file which they will be
creating outside XPS. However, users should not add any C-source files associated with it.
This indicates to XPS that user has an associated ELF file, but does not want to compile it
within XPS. Any changes that might require user to recompile his application (e.g.
MHS/MSS file change) must be managed by the user himself.

Bootloop Software Applications

For each processor, XPS adds an special bootloop software application. These applications
have a precompiled ELF associated with them. The pre-compiled ELF and the source file,
linker script and the make file used to compile that ELF can be found in the EDK
installation directory. These applications are displayed at the top of the Software
Applications tree. Users can not modify sources and compiler options for these
applications. Users can only select to either download this application into BRAMSs or not.

The bootloop application ELF files is a simple single-instruction application. The
instruction branches to itself thus creating an infinite loop. This is useful in cases where the
processor has started execution but the actual application has not been downloaded to
external memory. The bootloop prevents the processor from executing arbitrary
instructions. This application resides at the start address location of the processor. For
microblaze, the start address is 0x00000000, while for ppc405, it is OXFFFFFFFC.

Xmdstub Software Applications

For every microblaze processor in design, an application called
<processor_instance>_xmdstub is created by XPS. The ELF file associated with this
processor is created as part of the library generation at <proc_instance>/code/xmdstub.elf
location. Users can decide whether to download this application or not. Typically, if any of
the active user applications is in XMDSTUB mode, then users would want to download
xmdstub.elf for that processor onto BRAM memory.

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 27
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

ST XILINX® Chapter 2: Xilinx Platform Studio (XPS)

Compiler Options

A Compiler Option Dialog Window opens up when any active software application name
is double-clicked or Set Compiler Option... menu option is chosen for that software
application in the Software Projects tree in Applications tab. This dialog has the following
four tabs.

Environment

The tab displays the compiler being used for compiling this application. The compiler used
can be changed in the “Software PlatForm Settings” dialog. For a microblaze application,
users can specify what mode the application should be compiled into, XMDSTUB or
EXECUTABLE.

This tab gives you the ability to provide Program Start Address, Stack Size, and Heap
Size for the gcc-based compilers (mb-gcc and powerpc-eabi-gec). Please note that these
options should not be used with dcc (they should be specified in the linker script for dcc).
Heap size is only for PowerPC instance.

Optimization

This tab allows you to specify various compiler options. The degree of optimization can be
specified to be 1,2, or 3. User can specify whether to perform Global pointer optimizations.
Also, if they included the xilprofile library in the “Software PlatForm Settings” dialog, then
can also choose whether to enable profiling for this application or not.

Users can also choose the debug options, whether the code should be generated without
debug symbol, or with symbols for debugging (-g) or with symbols for assembly (-gstabs).

Directories

This tab allows you to specify various search directories for the Compiler (-B), for
Libraries (-L) and for Include (-I) files. You can specify what user libraries, if any, should
be used by the linker in the Libs to Link (-1) field. The libxil.a library is automatically
picked up by gcc- based compilers. For dcc, XPS automatically adds libxil.a as a library to
link in the makefile compiler options. You can also specify any Linker script (some times
called map file) to be used. Again, the gcc based compilers pick up the default linker script
from the EDK installation area if this option is not specified. You can also specify the name
of the Output ELF file to be generated by the compiler. If these paths are not absolute, they
must be relative to the project directory.

Advanced

The user can also specify various options which the compiler should pass to the
Preprocessor (-Wp), the Assembler (-Wa), and the Linker (-WI). Each option is dealt in
detail in the GNU Compiler Tools documentation. You do not need to type in the specific
flags as XPS introduces the correct flag for each option automatically. However, if you type
the flags, then XPS does not introduce them. If there are more than one option in a field,
they should be separated by space.

For compiling program sources, if you want to specify any Compiler Options in addition
to those specified in other tabs, you can specify them in the Program Sources Compiler
Options edit box.

28 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Flow Tool Settings and Required Files

$7XILINX°

Table 2-2:

Table 2-2 shows the options that are displayed in the compiler options dialog window

under various tabs.

Processor Options

Option

Value Type

Description

Compiler Options

Optimization Level

Choose the level of compiler optimization. Equivalent to -O option in
gcc.

Global Pointer
Optimization

Compiler Option

This option enables global pointer optimization in the compiler. This
option is only for MicroBlaze.

Debug

Compiler Option

-g option to generate debug symbols.

Search Paths

Directories

Compiler, Library and Include paths. Equivalent to -B, -L and -I
option to gcc.

Libraries to Link

Linker Option

The libraries to link against while building the ELF file (-1 option)

Output File File path and name | Sets the name of the executable file. Equivalent to -o option of gcc.
Program Start Hex Value Specifies the start address of the text segment of the executable for
Address MicroBlaze and the program start address for PPC.

Stack Size Hex Value Specifies the stack size in bytes for the program.

Heap Size Hex Value Specifies the heap size in bytes for the program. Heap size can only

be specified for a PPC Instance.

Pass Options

Compiler Options

Options can also be passed to the compiler, assembler and linker. The
options have to be space separated.

For more information on the options, please refer to Chapter 11, “GNU Compiler Tools”

Flow Tool Settings and Required Files

XPS supports tool flows as shown in Table 2-1. The Main menu has an Options submenu.
You can set various project and tool options, as described below for each menu item.

Compiler Options

This menu opens the same dialog box as one opened by double-clicking on a software
application name. If there is a single application in user’s system, it will automatically
open the dialog box corresponding to the application, otherwise, user will be asked which
software application they want the options to be set for. User can set various compiler
options in the processor dialog box which opens, as explained earlier in Processor Dialog

Box section.

Project Options

Menu item Options — Project Options opens a dialog box which allows user to specify
various project options. The same dialog can be brought up by clicking on the Project
Options button in the toolbar or by double-clicking on any item in the Project Options tree
in the Project View window. There are three tabs in this dialog box.

Embedded System Tools Guide (EDK 6.2i)
UG111 (v3.0) June 16, 2004

www.xilinx.com 29
1-800-255-7778



http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

Device and Repository

The target device for the project can be changed here. There are four different items:
Architecture, Device Size, Package, and Speed Grade.

Users can specify the Search Path directories here. However, if this option is changed,
users must close the project immediately. If this option is changed here, the changes will be
effective only if the project is closed and loaded again.This option corresponds to the -Ip
option of various batch tools. See Chapter 7, “Library Generator” and Chapter 5, “Platform
Generator” for more information.

Users can also specify their own Makefile to be used in XPS.Before EDK 6.2, XPS used to
generate only 1 makefile, namely <projname>. make. In 6.2, the XPS makefile has been split
into two parts

e The main makefile: <projname>. nake
e The include makefile: <projname>_i ncl . nake.

The <projname>_i ncl . make file contains all options and settings defined in form of
macros. The main makefile <projname>. make contains all the targets and commands for
the complete flow. The main makefile includes the <projname>_i ncl . make using the
following make directive:-

i ncl ude system.incl. make

This makes all the macros defined in <projname>_incl.make visible in <projname>.make.
XPS always writes out both the makefiles. However, users can choose not to use the
<projname>.make file for their flow. Instead, they can specify their own makefile. Note
that user makefile specified must be different from the two makefiles generated by XPS.
Users are expected to include the <projname>_incl.make in their own makefile too. This
way, any changes they make to any options and settings in XPS will be reflected in their
own makefile too. Typically, a user would generate the <projname>.make file once and
then copy it and modify it for their own purposes.

Note that if you will need to update your makefile whenever you make a significant
change in your design. Some of the changes which affect makefile structure are:-

e Adding, deleting, or renaming a processor
e Adding, deleting, or renaming a software application

¢ If you change the choice of implementation tool between ISE (ProjNav) and
XPS(Xflow).

o The ACE file generation command might be changed if you change the number of
processors in your design or if you add/delete opb_mdm ip for microblaze designs.

e The XILINX_EDK_DIR macro defined in system_incl.make file changes across Unix
(Solaris/Linux) and Windows platforms.

Hierarchy and Flow

This tab allows user to specify the design hierarchy, whether the processor design being
done in XPS is the top level module or if it is just a sub-module in the entire hierarchy. If
this design is a sub-module, the Top Instance edit box allows you to specify the instance
name used to instantiate this module in the top-level design. This corresponds to the -
iobuf and -ti options of PlatGen tool.

From EDK 6.1 onwards, XPS only supports modular (hierarchical) design mode. The Flat
mode is not supported.User can also choose whether to run the Xilinx Synthesis Tool
(XST).

30

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Tool Invocation

SUXILINX®

Users can also specify the flow to use for running the Xilinx implementation tools. The
available options are XPS (Xflow) and ISE (Project Navigator) flow. Note that if the design
is a sub-module, users must use the ISE flow. Please see the “ISE Project Navigator
Interface” section described later for details on how to add design components and files to
ProjNav project using XPS.

HDL and Simulation

This tab allows the user to specify the HDL (VHDL or Verilog) to be used by PlatGen and
SimGen. Users can also specify the location of various simulation libraries. For details on
simulation libraries, please refer to SimGen tool.Users can specify the simulation tool of
their choice. Currently, EDK supports ModelSim and NCsim. Users can also specify the
current simulation mode they want to use. These options are saved into the XMP file.

Required Files

If XPS (Xflow) is chosen to run the implementation tools, XPS expects a certain directory
structure in the project directory. For each project, the user must provide User Constraints
File (UCF). The file should reside in data directory in the project directory and should have
the name <mhs_name>.ucf. Users are also expected to provide an iMPACT script file. This
file should reside in etc directory and should be called download.cmd. If these files do not
exist, XPS will prompt the user to provide these files and will not run XFlow.To run Xilinx
Implementation tools, XPS uses two more files, bitgen.ut and fast_runtime.opt from etc
directory. However, if the two files are not present, XPS copies the default version of these
two files into that directory from the EDK installation directory. To change options for
Xilinx implementation tools, the user can modify the two files. Note that when a new
project is created, if the data and etc directories do not exists, XPS creates these empty
directories in the project directory.

Tool Invocation

After all options for the compiler and library generator are set, the tools can be invoked
from the Run submenu in the Main menu. The main toolbar also contains buttons to
invoke these tools.

There are two different flows in the EDK platform building flow, the hardware flow and
the software flow.

Software Flow

The software flow involves building up the software part of the embedded system. There
are two important steps:

1. Generate Libraries: This button invokes the library building tool LibGen with the
correct MSS file as input.

2. Compile Program Sources: This button invokes the compiler for each software
application which needs to be compiled with in XPS. with corresponding program
sources. It builds the executable files for each processor. If LibGen has not been
executed, this button first invokes LibGen.

Hardware Flow

The hardware flow involves building up the hardware part of the embedded system. There
are two important steps:

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 31
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

1. Generate Netlist: This button calls the platform building tool PlatGen with the correct
MHS file and produces the netlist files in NGC format.

2. Generate Bitstream: If using XPS for implementation tools, this button calls the tool
xflow with the fast_runtime.opt and bitgen.ut files residing in the etc. directory in the
project directory. XFlow in turn calls the Xilinx ISE Implementation tools. If using
ProjNav for the implementation flow, the button is greyed out. User must use Tools —
Export to ProjNav menu to add the XPS files into ProjNav project, run the complete
flow in ProjNav and then use Tools — Import from ProjNav menu to import bitstream
and bmm files back into the flow.

Merging Hardware and Software Flows and Downloading

1. Update Bitstream: This button invokes the tool bitinit. This is the stage where the
hardware and the software flows come together. This button also calls hardware and
software flow tools if required. At the end of this stage, users get download.bit file
which contains information regarding both the software and the hardware part of the
design.

2. Generate SystemACE File: This menu item generates a SystemACE file. This option
is available only when you have single processor in your system. This option is
available only on windows and linux platform in this release. Note that there is no
toolbar button for this option.

3. Download Bitstream: This button downloads the download.bit file onto the target
board using the Xilinx iMPACT tool in batch mode. XPS uses the file
etc/download.cmd for downloading the bitstream.

XPS generates a makefile in the project directory and calls the corresponding target. The
dependencies between various tools being run is take care of by the Makefile.

When LibGen is invoked, an MSS file is created for the software specification. When the
user exits the application, a prompt to save the current project appears.

ISE Project Navigator Interface

If ISE (ProjNav) is chosen for implementation flow in the Project Options dialog box, then
user must specify the ProjNav project (NPL) file. ProjNav will run implementation tools in
the directory where this ProjNav project file is created. Default NPL file location is

<pr oj _di r >/projnav/<pr oj _nane>.npl. It is recommended not to use implementation
directory for ProjNav flow since XPS clean mechanism deletes this directory. To run the
ProjNav flow, user can create a new ProjNav project file or specify an already existing
ProjNav project file.

Menu option Tools — Export ProjNav Project adds the required vhdl and bmm files to
the ProjNav project. It also sets the ProjNav option Macro Search Path to
<proj_dir>/implementation so that implementation tools can locate ngc files generated by
PlatGen or XST.

Menu option Tools — Import ProjNav Project gives user the option to import a bitstream
and a bmm file back into the XPS Project. The bit file should be the one generated by bitgen
at the end of implementation tools. The bmm file should also be the one generated by
bitgen, which has BRAM placement information. XPS copies the bit and bmm files into the
implementation directory as <mhsbasename>. bi t and <mhshasename>_bd. bnm
respectively.

32

www.xilinx.com Embedded System Tools Guide (EDK 6.2i)
1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

Debug and Simulation

$7XILINX°

Debug and Simulation

Users can debug the hardware and the software part of the design either by simulation or
by running it on the hardware itself. XPS provides support for invoking the corresponding
tools to perform the job.

PBD Editor

Xilinx Microprocessor Debug (XMD): Invoke the XMD tool to debug the application
software. The XMD-button on the XPS toolbar opens up a XMD shell in the project
directory.

Software Debugger: The debug button invokes the software debugger
corresponding to the compiler being used for the processor. If there are more than one
processor in the design, XPS prompts to choose the processor whose program sources
the user wants to debug.

Hardware Simulation Model Generator (SimGen): Invoke the SimGen tool to
generate various simulation models for the components instantiated in MHS File.
Depending on the simulation model to be used (Behavioral, Structural or Timing),
XPS calls SimGen with appropriate options to generate the simulation models and
initialize memory. Then XPS compiles those models for ModelTech’s ModelSim
simulator and starts the simulator with the compiled files.

The Processor Block Diagram Editor (PBD Editor) allows you to read, create, modify and
save a description of an FPGA Platform that references Hardware (HW) components. The
HW components comprise, in part, microprocessors, buses and bus arbiters, and
peripheral devices.

The PBD Editor block diagram supplies the hardware platform information written into
the MHS file.

PBD Editor Interface

The PBD Editor interface is shown in Figure 2-4. These areas comprise the interface:

The workspace
The system tabs

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 33

UG111 (v3.0) June 16, 2004

1-800-255-7778


http://www.xilinx.com

ST XILINX® Chapter 2: Xilinx Platform Studio (XPS)

1=
= | _bram_| ;I
Dptions | Components I Suztem I | _otir
| Add Bus Connection Options
opt_var
"When you add a bus conhection. .. e g:ﬂ_bl
f+ ze the Autorouter to add ane
or mare line segments between drbram
the points pou indicate p— et
= Usze the Manual method to add ]
zingle line segments between
the points you indicate
ot o
_nat
Use a press - drag - release action to
specify a single pair of line segment
points. mm—:“* —|der_ni
Uze a click - click action to specify &
connected zequence of line segment
pointz. Terminate the sequence with a me—:“
double click.
i_Imk oph_bus porta potth -
4 ! »
spztem. pbd I
Figure 2-3: The PBD Editor
PBD Editor Workspace
The PBD Editor workspace is the upper right window in the XPS (see Figure 2-4). The
workspace contains the block diagram describing the system hardware.
bram_N
oty ﬂ
T,?'lar bram_bl
ok
drbram
| it catir
opb gpl
0
opD |Bg
_nart
opb_me
mecon |
| eth
ariet
i_lmk opk_bus porta porth -
Kl | >
syztemn. pbd l
Figure 2-4: PBD Editor Workspace
34 www.xilinx.com Embedded System Tools Guide (EDK 6.2i)

1-800-255-7778 UG111 (v3.0) June 16, 2004


http://www.xilinx.com

PBD Editor ST XILINX®

System Tabs

The system tabs are in the upper left of the XPS window (see Figure 2-5). Two of the tabs in
the window are used in the PBD Editor operation.

e The Options tab changes according to the tool that you are using and allows you to
set options related to the tool, such as how the Add Bus Connection tool should
operate.

e The Components tab allows you to select a component (a CPU, Bus Infrastructure
component, or peripheral) to instantiate into your system. The components are Xilinx
cores.

Options  Campanerts | System |

LCategonies

<-4l Componentz--»
Bus Infraztructure
CPUsz

Peripherals

Compaonents

bram_block, H
dor_intc

dor_w29

ddr_clock_module_ref

dzbrann_if_chtr

fel_croa2

fel_w20 ;l
Compaonent Marme Filker

Orientation

IFh:utate ] j

Figure 2-5: System Tabs

Creating the Hardware Block Diagram

The following procedures are used to create the hardware platform in the PBD Editor.

Adding a Component Instance to the System

Component instances are Xilinx cores (IP) instantiated in the hardware design. The
components you add to the system may be:

e CPUs
e Bus components
e Peripherals

To add a component instance to the system:

Embedded System Tools Guide (EDK 6.2i) www.xilinx.com 35
UG111 (v3.0) June 16, 2004 1-800-255-7778


http://www.xilinx.com

$7 XILINX°

Chapter 2: Xilinx Platform Studio (XPS)

1. Select the project_name.pbd tab in the workspace to display the system block
diagram.

2. Select Add —» Component or click the Add Component toolbar button.

il

3. Inthe Components tab, use the Categories and Components lists to specify the
component you are adding.

The component you select is attached to the mouse cursor.

Note: To make the component selection easier, type the first letter or letters of the component
in the Component Name Filter field. The Components list box shows only the components that
begin with those letters. A regular expression can also be used to filter components. For
example, typing “.*uart” will list all components with “uart” in the name. A “.” stands for a
character and “*” means “zero or more”.

4. Click where you want the component instance to appear in the workspace.
Component instance notes:

e The PBD Editor assigns the new component instance the default name
corename_number. The number is incremented each time another instance is added.

e To rename a component instance, see “Naming an Instance”.

e Ifabus pin on the component symbol touches a bus, and if the pin is compatible with
the bus type, the symbol pin is connected to the bus when the component instance is
placed in the block diagram.

Naming an Instance

When you add a component to the system, the PBD Editor assigns the new component
instance the default name corename_number, and the number is incremented each time
another instance is added. You can leave the machine-generated names as is. However, it is
usually easier to debug the design using your own names.

To rename an instance.

1. Double-click the instance in the workspace.
2. Inthe Object Properties dialog box, change the Instance Name.

Setting Component Instance Parameters

You set parameters to customize the instantiated IP for your design. Parameters may be set
for CPUs, bus components, or peripherals. The properties you set depend on the type of
component and the IP (core) from which the component was instantiated.

IP parameters are described in the data sheets for the cores instantiated in the design. Data
sheets can be accessed from the Xilinx IP Center page at http://www.xilinx.com/Zipcenter.

To set parameters for a customiza