Sequential Logic

- Combinational logic:
 - Compute a function all at one time
 - Fast/expensive
 - e.g. combinational multiplier
- Sequential logic:
 - Compute a function in a series of steps
 - Slower/more efficient
 - e.g. shift/add multiplier
- Key to sequential logic: circuit has feedback
 - Use the result of one step as an input to the next

Sequential Logic

Circuits with feedback How to control feedback? what stops values from cycling around endlessly? • this is an asynchronous sequential circuit Combinational circuit

Simplest circuits with feedback: latch

- Two inverters form a static memory cell
 - will hold value as long as it has power applied

- How to get a new value into the memory cell?
 - selectively break feedback path
 - load new value into cell

Let's Use This Latch

What happens?

What We Need:

- When inputs change...
- Wait until combinational logic has finished and result it stable...
- Then sample the output value and save...
- Feed the saved output back to the input of the combinational logic
 - Make sure the saved output can't change
- Key idea: we sample the result at the right time, i.e. when it is ready

 Only then do we update the stored value
- How do we know when to sample?
- How do we know when the inputs changed?
- How do we know how long to wait?

Sequential Logic

What We Need:

- A circuit that can sample a value
- A signal that says when to sample
- Edge-triggered D flip-flop (register)
 - Samples on positive edge of clock Holds value until next positive edge
 - Most common storage element
- Clock
 - Periodic signal, each rising edge signals D flip-flops to sample
- All registers sample at the same time

Typical timing specifications

- Positive edge-triggered D flip-flop
 - setup and hold times
 - minimum clock width
 - propagation delays (low to high, high to low, max and typical)

Synchronous System Model Register-to-register operation Perform operations during transfer Many transfers/operations occur simultaneously

System Clock Frequency

- Register transfer must fit into one clock cycle
 - reg tpd + C.L. tpd + reg tsu < Tclk
 - Use maximum delays
 - · Find the "critical path"
 - Longest register-register delay

15

Shift register

- Holds samples of input
 - store last 4 input values in sequence
 - 4-bit shift register:

Sequential Logic

16

4-bit Universal shift register

- Holds 4 values
 - serial or parallel inputs

