
1

Pipelining

Readings: 4.5-4.8

Example: Doing the laundry

Ann, Brian, Cathy, & Dave
 each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

A B C D

2

Sequential Laundry

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

3

Pipelined Laundry: Start work ASAP

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

4

Pipelining Lessons

Pipelining doesn’t help latency of
single task, it helps throughput
of entire workload

Pipeline rate limited by slowest
pipeline stage

Multiple tasks operating
simultaneously using different
resources

Potential speedup = Number pipe
stages

Unbalanced lengths of pipe stages
reduces speedup

Time to “fill” pipeline and time to
“drain” it reduces speedup

Stall for Dependences

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

5

Pipelined Execution

Now we just have to make it work

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

6

Single Cycle vs. Pipeline

Clk

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

7
R

egister

R
egister

R
egister

R
egister

Divide datapath into multiple pipeline stages

Pipelined Datapath

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

8

Pipelined Control

The Main Control generates the control signals during Reg/Dec
Control signals for Exec (ALUOp, ALUSrc, …) are used 1 cycle later
Control signals for Mem (MemWE, Mem2Reg, …) are used 2 cycles later
Control signals for Wr (RegWE, …) are used 3 cycles later

IF/ID
 R

egister

ID
/Ex R

egister

Ex/M
em

 R
egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

Main
Control

ALUSrc ALUSrc

ALUOp ALUOp

RegWE RegWERegWE RegWE

MemWE MemWE MemWE

Mem2Reg Mem2Reg Mem2Reg

Wr

9

Can pipelining get us into trouble?

Yes: Pipeline Hazards
structural hazards: attempt to use the same resource two different ways at

the same time
E.g., combined washer/dryer would be a structural hazard or folder

busy doing something else (watching TV)
data hazards: attempt to use item before it is ready

E.g., one sock of pair in dryer and one in washer; can’t fold until get
sock from washer through dryer

instruction depends on result of prior instruction still in the pipeline
control hazards: attempt to make decision before condition evaluated

E.g., washing football uniforms and need to get proper detergent level;
need to see after dryer before next load in

branch instructions
Can always resolve hazards by waiting

pipeline control must detect the hazard
take action (or delay action) to resolve hazards

10

Pipelining the Load Instruction

The five independent functional units in the pipeline datapath are:
Instruction Memory for the Ifetch stage
Register File’s Read ports (bus A and busB) for the Reg/Dec stage
ALU for the Exec stage
Data Memory for the Mem stage
Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st LDUR

Ifetch Reg/Dec Exec Mem Wr2nd LDUR

Ifetch Reg/Dec Exec Mem Wr3rd LDUR

11

The Four Stages of R-type

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode
Exec: ALU operates on the two register operands
Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

12

Structural Hazard

Interaction between R-type and loads causes structural hazard on writeback

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

13

Important Observation

Each functional unit can only be used once per instruction
Each functional unit must be used at the same stage for all instructions:

Load uses Register File’s Write Port during its 5th stage

R-type uses Register File’s Write Port during its 4th stage

Solution: Delay R-type’s register write by one cycle:
Now R-type instructions also use Reg File’s write port at Stage 5
Mem stage is a NOOP stage: nothing is being done.

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

Ifetch Reg/Dec Exec WrR-type Mem
1 2 3 4 5

14

Pipelining the R-type Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

Exec

15

The Four Stages of Store

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Write the data into the Data Memory
Wr: NOOP

Compatible with Load & R-type instructions

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

16

The Stages of Conditional Branch

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode, compute branch target
Exec: Test condition & update the PC
Mem: NOOP
Wr: NOOP

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

Branch updates the PC at the end of the Exec stage.

17

Control Hazard

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrCBZ

Ifetch Reg/Dec Exec Mem Wrload

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

Exec

18
R

egister

R
egister

R
egister

R
egister

When can we compute branch target address?
When can we compute the CBZ condition?

Accelerate Branches

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

19
R

egister

R
egister

R
egister

R
egister

When can we compute branch target address?
When can we compute beq condition?

Accelerate Branches

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

+

test

20

Solution #3: Branch Delay Slot

Redefine branches: Instruction directly after branch always executed
 Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

ADD X1, X0, X4
CBZ X2, FOO
ADD X1, X0, X4

SUB X2, X0, X3
ADD X1, X0, X4
CBZ X1, FOO
SUB X2, X0, X3

 ADD X1, X0, X4
 CBZ X1, FOO
 ADD X1, X2, X0
 ADD X1, X3, X3
 …
FOO:
 ADD X1, X2, X0

ADD X1, X0, X4
CBZ X1, FOO
ADD X31, X31, X31

No
wasted
cycles

No
wasted
cycles Assume 50% branch,

Wastes ½ cycle per branch

Compare vs. stall

Insert noop
Wastes 1 cycle

per branch

Branch updates the PC at the end of the Reg/Dec stage.

21

Control Hazard 2

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrCBZ

Ifetch Reg/Dec Exec Mem Wrload

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

Exec

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

22

Delay loading next instruction, load no-op instead

CPI if all other instructions take 1 cycle, and branches are 20% of instructions?

Solution #1: Stall

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrCBZ

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

Exec

BubbleBubbleBubbleBubbleStall

Guess all branches not taken, squash if wrong

CPI if 50% of branches actually not taken, and branch frequency 20%?

23

Solution #2: Branch Prediction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrCBZ

Ifetch Reg/Dec Exec Mem Wrload

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Exec

Exec

Exec

Exec

24

Solution #3: Branch Delay Slot

Redefine branches: Instruction directly after branch always executed
 Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

ADD X1, X0, X4
CBZ X2, FOO

SUB X2, X0, X3
ADD X1, X0, X4
CBZ X1, FOO

 ADD X1, X0, X4
 CBZ X1, FOO

 ADD X1, X3, X3
 …
FOO:
 ADD X1, X2, X0

ADD X1, X0, X4
CBZ X1, FOO

25

Data Hazards

Consider the following code:
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrADD

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

26

Data Hazards

Consider the following code:
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrADD

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

27

Data Hazards on Loads

LDUR X0, [X31, 0]
SUB X3, X0, X4 – Cannot be solved – data not available when needed.
AND X5, X0, X6 – Handled by forwarding logic
ORR X7, X0, X8 – Fixed by register file bypass
EOR X9, X0, X10 – Not a problem

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrLDUR

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

28

Design Register File Carefully

What if reads see value after write during the same cycle?
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrADD

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

29

Forwarding

Add logic to pass last two values from ALU output to ALU input(s) as needed
Forward the ALU output to later instructions
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrADD

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

30

R
egister

R
egister

R
egister

R
egister

Requires values from last two ALU operations.
Remember destination register for operation.
Compare sources of current instruction to destinations of previous 2.

Forwarding (cont.)

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

31

R
egister

R
egister

R
egister

R
egister

Requires values from last two ALU operations.
Remember destination register for operation.
Compare sources of current instruction to destinations of previous 2.

Forwarding (cont.)

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

Forwarding
Unit

Note: what if reg written twice?
ADD X0, X1, X1
SUB X0, X3, X0
ORR X2, X0, X6
Write to X31? STUR?

32

Data Hazards on Loads

LDUR X0, [X31, 0]
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

Mem

WrExec

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrLDUR

Ifetch Reg/Dec MemSUB

Ifetch Reg/Dec Exec WrAND

Ifetch Reg/Dec Mem WrORR

Ifetch Reg/Dec Mem WrEOR

Exec

Exec

Exec

33

Data Hazards on Loads (cont.)

Solution:
Use same forwarding hardware & register file for hazards 2+ cycles later
Force compiler to not allow register reads within a cycle of load

Fill delay slot, or insert no-op.

