Dark silicon, Shiny objects, and the uncertain future

Moore's Law

Number of Components Per Integrated Circuit

Log² of the Number of Components Per Integrated Function

Dennard Scaling

Power = Capacitance-per-component X Components X Activation X Frequency X Voltage^2

Linear mode of operation: Voltage prop Frequency

$P = 1/2CV^2 fA$; V pprop f

Dennard:

Table 1. Dennard vs. post-Dennard (leakage-limited) scaling.¹ In contrast to Dennard scaling,⁵ which held until 2005, under the post-Dennard regime, the total chip utilization for a fixed power budget drops by *S*² with each process generation. The result is an exponential increase in dark silicon for a fixed-sized chip under a fixed area budget.

Transistor property	Dennard	Post-Dennard
∆ Quantity	S^2	S^2
Δ Frequency	S	S
∆ Capacitance	1 <i>/S</i>	1/ <i>S</i>
$V_{\rm DD}^2$	1/ <i>S</i> ²	1
$\Rightarrow \Delta$ Power = Δ QFCV ²	1	S^2
$\Rightarrow \Delta$ Utilization = 1/Power	1	$1/S^{2}$

What now?

Specialize

A6

A9X

Specialization is the answer?

TI OMAP5430 SoC

Difficulty

daily \$ per Gh/s

Do less

Utilization @ 40 mm², 3 W

Which one is the iPhone and which one is the Macbook?

Do something else

the death of the desktop?

the death of

the laptop?

Figure 1 Forecast: Share Of US Consumer PC Sales By Form Factor, 2008 To 2015

Source: Company Filings (07/24/12

Apple Annual Gross Revenue and Profit/Loss for a 28 year period from 1982 to 2009

Predicting the future is hard

- The future is more uncertain now than ever.
 - in 1998 Moore's law was supposed to end in a 3-5 years because of wavelength limitations
 - in 2001 I remember everyone thinking we'd scale pipelines out to 40-60 stages and push frequency up to 10-20Ghz, but then Denard Scaling ended
 - in 2003 the CTO of Intel told me we'd have 128 core Xeon chips in 10 years, but then Dark Silicon happened
 - in 2006
 - everyone thought parallel programming would be "solved" in 2-3 years, but hopefully this class has shown you that didn't happen
 - the iPhone happened, ...but are we peeking? (half way there at least?)
 - Google started to use the term "the cloud" (1/4 of the way there?)