
VLIW & ELI-512

Josh Fisher Trace 7/200

Why VLIW?

• To utilize ILP

• in a simple HW design

• Good for scientific computing & signal processing,
crypto

Why not VLIW?

• if you can build a wide issue Tomasulo’s algorithm
(aka “Super Scalar”) processor, then it will be faster
than the same width VLIW processor.

• there just isn’t enough provably statically available
ILP

• Code compatibility

How to handle branches?

• [ALU][ALU][ALU][BLEZ][BGTZ][BEQZ]

• Option 1: don’t do that: [ALU][ALU][ALU][BLEZ]

• Option 2: assign precedence

Exceptions?
• [ADD r1 + r3 -> r3][LOAD @(r5) -> r6][DIV]

• Allow instructions that don’t fault to complete

• OS has to fix the code

• mask off instructions that have completed on
restart

• Throw out all results on completion

• Potential for live-lock

What about memory
ordering?

• [STORE r1 -> @(r2)][LOAD @(r3) -> r4] ;;; r2 = r3

• result is value of r1 goes into r4

• the previous value in memory goes into r4

• undefined

• [STORE r1 -> @(r2)][STORE r3 -> @(r2)]

• undefined

• precedence

• [STORE r1 -> @(r2)][STORE r3 -> @(r4)] ;;; r2 != r4

• only allow 1 store

• precedence

Pros/Cons of binary
translation

• Perhaps not as fast as having the source

• but debatable

