
UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 1 of 9

SimpleScalar

This document should act as a quick reference to the SimpleScalar out-of-order issue
processor simulator that we will use throughout much of this course.

What is it?
SimpleScalar is a suite of processor simulators and supporting tools. The simulation
architecture is called PISA, and is similar to the MIPS architecture studied in CSE378.

Sim-outorder is an instruction-level simulator of an out-of-order issue superscalar
processor. The memory system is two-level and there is speculative execution support.
This is a performance simulator, tracking the latency of all pipeline operations. In order
to track latency and contention for resources, sim-outorder does a lot of work. This
makes it slow. It executes perhaps half a million instructions every second, while the
machine you run it on executes maybe 2 billion instructions. This makes sim-outorder
around 4000 times slower than an actual processor. So remember, a program that took 1
second to run on a real computer would take over half an hour to run in sim-outorder.

The toolkit also contains several other simulators. Sim-fast and sim-safe simulate the
execution of instructions, but do not model any processor internals. There is no pipeline,
one instruction is fetched, executed and completed each “cycle.” They run 4-8 times
faster than sim-outorder, but provide no detail about what happened during execution.

What isn’t it?
SimpleScalar doesn’t have a graphical front-end like xspim or pcspim. It does not
simulate an operating system, though a limited number of system calls are supported with
the help of the host operating system.

Finding out more
You can learn more about SimpleScalar and find documentation at
http://www.simplescalar.com. The documentation on the website matches the versions of
the tools available on the instructional machines. The user’s guide and hacker’s tutorial
may both be useful.

Running sim-outorder
You can find the sim-outorder binary in the directory
/cse/courses/cse471/06sp/simplescalar/bin/
Optionally you can add this path to your PATH environment variable.

To invoke the simulator, type:
sim-outorder {simulator-options} simulated-program {program-arguments}

It is often handy to redirect a file to standard input by using < input file name.

When the simulator is running, it produces no output at all for sometimes minutes on end.
This is normal, if frustrating behavior.

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 2 of 9

General Options
Option Arguments Default

-config <string> <none>
Load the configuration parameters from a file (one option per line).

-dumpconfig <string> <null>
Dump the configuration parameters to a file.

-h <true|false> false
Print help message.

-v <true|false> false
Verbose operation.

-d <true|false> false
Enable debug messages.

-i <true|false> false
Start in Dlite debugger.

-seed <int> 1
Random number generator seed (0 for timer seed).

-q <true|false> false
Initialize and terminate immediately.

-chkpt <string> <null>
Restore EIO trace execution from a file.

-redir:sim <string> <null>
Redirect simulator output to file (non-interactive only).

-redir:prog <string> <null>
Redirect simulated program output to file.

-nice <int> 0
Simulator scheduling priority.

-max:inst <uint> 0
Maximum number of instructions to execute.

-fastfwd <int> 0
Number of instructions skipped before timing starts.

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 3 of 9

-ptrace <string list...> <null>
Generate pipetrace <fname|stdout|stderr> <range> (see below).

-pcstat <string list...> <null>
Profile stat(s) against text addresses (multiple uses ok).

-bugcompat <true|false> false
Operate in backward-compatible bugs mode (for testing only).

Pipetrace range arguments are formatted as follows:

{{@|#}<start>}:{{@|#|+}<end>}

Both ends of the range are optional, if neither are specified, the entire execution is traced.
Ranges that start with a `@' designate an address range to be traced, those that start with
an `#' designate a cycle count range. All other range values represent an instruction count
range. The second argument, if specified with a `+', indicates a value relative to the first
argument, e.g., 1000:+100 == 1000:1100. Program symbols may be used in all contexts.

Examples:

-ptrace FOO.trc #0:#1000
-ptrace BAR.trc @2000:
-ptrace BLAH.trc :1500
-ptrace UXXE.trc :
-ptrace FOOBAR.trc @main:+278

Processor Configuration Options
Option Arguments Default

-fetch:ifqsize <int> 4
Instruction fetch queue size (instructions).

-fetch:mplat <int> 3
Extra branch mis-prediction latency.

-fetch:speed <int> 1
Speed of front-end of machine relative to execution core.

-decode:width <int> 4
Instruction decode bandwidth (instructions/cycle)

-issue:width <int> 4
Instruction issue bandwidth (instructions/cycle)

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 4 of 9

-issue:inorder <true|false> false
Run pipeline with in-order issue.

-issue:wrongpath <true|false> true
Issue instructions down wrong execution paths.

-commit:width <int> 4
Instruction commit bandwidth (instructions/cycle).

-ruu:size <int> 16
Register update unit (RUU) size.

-lsq:size <int> 8
Load/store queue (LSQ) size.

-res:ialu <int> 4
Total number of integer ALUs available.

-res:imult <int> 1
Total number of integer multiplier/dividers available.

-res:memport <int> 2
Total number of memory system ports available (to CPU).

-res:fpalu <int> 4
Total number of floating point ALUs available.

-res:fpmult <int> 1
Total number of floating point multiplier/dividers available.

Branch Predictor Configuration Options
Option Arguments Default

-bpred <string> bimod
Branch predictor type {nottaken|taken|perfect|bimod|2lev|comb}

-bpred:bimod <int> 2048
Bimodal predictor (uses a branch target buffer with 2 bit counters) table size.

-bpred:2lev <int list...> 1 1024 8 0
2-level predictor configuration (l1size l2size hist_size xor).

-bpred:comb <int> 1024
Combining predictor meta table size.

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 5 of 9

-bpred:ras <int> 8
Return address stack size (0 for no return stack).

-bpred:btb <int list...> 512 4
BTB configuration (num_sets associativity)

-bpred:spec_upde <string> <null>
Speculative predictors update in {ID|WB} (default non-speculative).

Branch predictor configuration examples for 2-level predictor:

Configurations: N, M, W, X

N # entries in first level (# of shift register(s))
W width of shift register(s)
M # entries in 2nd level (# of counters, or other FSM)
X (yes-1/no-0) xor history and address for 2nd level index

The predictor `comb' combines a bimodal and a 2-level predictor.

Memory Subsystem Configuration Options
Option Arguments Default

-cache:dl1 <string> dl1:128:32:4:l
L1 data cache configuration {<config>|none} (see below).

-cache:dl1lat <int> 1
L1 data cache hit latency (cycles).

-cache:dl2 <string> ul2:1024:64:4:l
L2 data cache configuration {<config>|none} (see below).

-cache:dl2lat <int> 6
L2 data cache hit latency (cycles).

-cache:il1 <string> il1:512:32:1:l
L1 inst cache configuration {<config>|dl1|dl2|none} (see below).

-cache:il1lat <int> 1
L1 instruction cache hit latency (cycles).

-cache:il2 <string> dl2
L2 instruction cache configuration {<config>|dl2|none} (see below).

-cache:il2lat <int> 6
L2 instruction cache hit latency (cycles).

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 6 of 9

-cache:flush <true|false> false
Flush caches on system calls.

-cache:icompres <true|false> false
Convert 64-bit inst addresses to 32-bit inst equivalents.

-mem:lat <int list...> 18 2
Memory access latency (<first_chunk> <inter_chunk>).

-mem:width <int> 8
Memory access bus width (bytes).

-tlb:itlb <string> itlb:16:4096:4:l
Instruction TLB configuration {<config>|none} (see below).

-tlb:dtlb <string> dtlb:32:4096:4:l
Data TLB configuration {<config>|none} (see below).

-tlb:lat <int> 30
Inst/data TLB miss latency (cycles).

The cache configuration parameter <config> has the following format:

<name>:<nsets>:<bsize>:<assoc>:<repl>

<name> name of the cache being defined
<nsets> number of sets in the cache
<bsize> block size of the cache
<assoc> associativity of the cache
<repl> block replacement strategy, 'l'-LRU, 'f'-FIFO, 'r'-random

Examples:

-cache:dl1 dl1:4096:32:1:l
-dtlb dtlb:128:4096:32:r

Cache levels can be unified by pointing a level of the instruction cache hierarchy at the
data cache hierarchy using the "dl1" and "dl2" cache configuration arguments. Most
sensible combinations are supported, e.g.,

A unified l2 cache (il2 is pointed at dl2):

-cache:il1 il1:128:64:1:l -cache:il2 dl2
-cache:dl1 dl1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

Or, a fully unified cache hierarchy (il1 pointed at dl1):

-cache:il1 dl1
-cache:dl1 ul1:256:32:1:l -cache:dl2 ul2:1024:64:2:l

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 7 of 9

Simulation Outputs

General Simulation Statistics
sim_num_insn total number of instructions committed
sim_num_refs total number of loads and stores committed
sim_num_loads total number of loads committed
sim_num_stores total number of stores committed
sim_num_branches total number of branches committed
sim_elapsed_time total simulation time (seconds)
sim_inst_rate simulation speed (instructions/second)
sim_total_insn total number of instructions executed
sim_total_refs total number of loads and stores executed
sim_total_loads total number of loads executed
sim_total_stores total number of stores executed
sim_total_branches total number of branches executed
sim_cycle total simulation time (cycles)
sim_IPC instructions per cycle
sim_CPI cycles per instruction
sim_exec_BW total instructions (mis-speculated + committed) per
 cycle
sim_IPB instructions per branch

Instruction Fetch Queue (IFQ) Statistics
IFQ_count cumulative IFQ occupancy
IFQ_fcount cumulative IFQ full count
ifq_occupancy average IFQ occupancy (instructions)
ifq_rate average IFQ dispatch rate (instructions/cycle)
ifq_latency average IFQ occupant latency (cycles)
ifq_full fraction of time (cycles) IFQ was full

Register Update Unit (RUU) Statistics – a.k.a. commit unit
RUU_count cumulative RUU occupancy
RUU_fcount cumulative RUU full count
ruu_occupancy average RUU occupancy (instructions)
ruu_rate average RUU dispatch rate (instructions/cycle)
ruu_latency average RUU occupant latency (cycles)
ruu_full fraction of time (cycles) RUU was full

Load/Store Queue (LSQ) Statistics
LSQ_count cumulative LSQ occupancy
LSQ_fcount cumulative LSQ full count
lsq_occupancy average LSQ occupancy (instructions)
lsq_rate average LSQ dispatch rate (instructions/cycle)
lsq_latency average LSQ occupant latency (cycles)

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 8 of 9

lsq_full fraction of time (cycles) LSQ was full

Instruction Issue and Retirement (Commit) Statistics
sim_slip total number of slip cycles
avg_sim_slip the average slip between issue and retirement

Branch Predictor Statistics
JR = Jump Register instruction
bpred_bimod.lookups total number of branch predictor lookups
bpred_bimod.updates total number of updates
bpred_bimod.addr_hits total number of address-predicted hits
bpred_bimod.dir_hits total number of direction-predicted hits
 (includes addr_hits)
bpred_bimod.misses total number of misses
bpred_bimod.jr_hits total number of address-predicted hits for JRs
bpred_bimod.jr_seen total number of JRs seen
bpred_bimod.jr_non_ras_hits.PP total number of address-predicted hits for
 non-return address stack (RAS) JRs
bpred_bimod.jr_non_ras_seen.PP total number of non-RAS JRs seen
bpred_bimod.bpred_addr_rate branch address-prediction rate (address-hits/updates)
bpred_bimod.bpred_dir_rate branch direction-prediction rate (all-hits/updates)
bpred_bimod.bpred_jr_rate JR address-prediction rate (JR addr-hits/JRs seen)
bpred_bimod.bpred_jr_non_ras_rate.PP
 non-RAS JR address-prediction rate (non-RAS JR hits/JRs seen)
bpred_bimod.retstack_pushes total number of address pushed onto RAS
bpred_bimod.retstack_pops total number of address popped off of RAS
bpred_bimod.used_ras.PP total number of RAS predictions used
bpred_bimod.ras_hits.PP total number of RAS hits
bpred_bimod.ras_rate.PP RAS prediction rate (RAS hits/used RAS)

Cache Statistics
These are gathered appropriately for il1, dl1, il2, dl2, ul1, ul2, itlb and dtlb:
cache.accesses total number of accesses
cache.hits total number of hits
cache.misses total number of misses
cache.replacements total number of replacements
cache.writebacks total number of writebacks
cache.invalidations total number of invalidations
cache.miss_rate miss rate (misses/reference)
cache.repl_rate replacement rate (replacements/reference)
cache.wb_rate writeback rate (wrbks/ref)
cache.inv_rate invalidation rate (invs/ref)

Miscellaneous Statistics
sim_invalid_addrs total non-speculative bogus addresses seen
 (debug variable)

UW CSE SimpleScalar 3.0 Quick Guide

 SimpleScalar 3.0 Guide page 9 of 9

ld_text_base program text (code) segment base
ld_text_size program text (code) size (bytes)
ld_data_base program initialized data segment base
ld_data_size program initialized `.data' and uninitialized `.bss' size
 (bytes)
ld_stack_base program stack segment base (highest address in stack)
ld_stack_size program initial stack size
ld_prog_entry program entry point (initial PC)
ld_environ_base program environment base address address
ld_target_big_endian target executable endian-ness, non-zero if big endian
mem.page_count total number of pages allocated
mem.page_mem total size of memory pages allocated
mem.ptab_misses total first level page table misses
mem.ptab_accesses total page table accesses
mem.ptab_miss_rate first level page table miss rate

