
Spring 2006 471 1

WaveScalar [MICRO 03]

Dataflow machine

• good at exploiting ILP

• dataflow parallelism + traditional coarser-grain parallelism

• cheap thread management

• low operand latency because of a hierarchical organization

• memory ordering enforced through wave-ordered memory

• no special languages

Spring 2006 471 2

WaveScalar

Additional motivation:

• increasing disparity between computation (fast transistors) &

communication (long wires)

• increasing circuit complexity

• decreasing fabrication reliability

Spring 2006 471 3

Monolithic von Neumann Processors

A phenomenal success today.

But in 2016?

! Performance
Centralized processing & control,

e.g., operand broadcast networks

 ! Complexity

40-75% of “design” time is design

verification

 ! Defect tolerance
1 flaw -> paperweight

Spring 2006 471 4

WaveScalar!s Microarchitecture

Good performance via distributed microarchitecture "

• hundreds of PEs

• dataflow execution – no centralized control

• short point-to-point communication

• organized hierarchically for fast communication between
neighboring PEs

• scalable

Low design complexity through simple, identical PEs "

• design one & stamp out thousands

Defect tolerance "

• route around a bad PE

Spring 2006 471 5

Processing Element

• Simple, small (.5M transistors)

• 5-stage pipeline (receive input

operands, match tags, instruction

schedule, execute, send output)

• Holds 64 (decoded) instructions

• 128-entry token store

• 4-entry output buffer

Spring 2006 471 6

PEs in a Pod

• Share operand bypass network

• Back-to-back producer-consumer

execution across PEs

• Relieve congestion on intra-

domain bus

Spring 2006 471 7

Domain

Spring 2006 471 8

Cluster

Spring 2006 471 9

WaveScalar Processor

Long distance

communication

• dynamic routing

• grid-based network

• 2-cycle hop/cluster

Spring 2006 471 10

Whole Chip

• Can hold 32K instructions

• Normal memory hierarchy

• Traditional directory-based
cache coherence

• ~400 mm2 in 90 nm
technology

• 1GHz.

• ~85 watts

Spring 2006 471 11

WaveScalar Instruction Placement

Spring 2006 471 12

Instruction Placement Trade-offs

operand latency vs.

parallelism (resource conflicts)

Spring 2006 471 13

WaveScalar Instruction Placement

Place instructions in PEs to maximize data locality & instruction-level
parallelism.

• Instruction placement algorithm based on a performance model
that captures the important performance factors [SPAA 06]

• Depth-first traversal of dataflow graph to make chains of
dependent instructions

• Broken into segments [ASPLOS 06]

• Snakes segments across the chip on demand

• K-loop bounding to prevent instruction “explosion”

Spring 2006 471 14

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 15

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 16

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 17

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 18

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 19

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Global load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Spring 2006 471 20

Wave-ordered Memory

• Compiler annotates memory
operations

• Send memory requests

 in any order

• Hardware reconstructs the
correct order

Load

Store

Load

Store
Load

Store

3

4

8

5

6
7

Sequence

4

?

9

6

8
8

Successor

2

3

?

4

5
4# Predecessor

Spring 2006 471 21

Store bufferWave-ordering Example

4 ?3

7 84

8 9?

Load

Store

Load

Store
Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3

3 42

Spring 2006 471 22

Wave-ordered Memory

Waves are loop-free sections of the
dataflow graph

Each dynamic wave has a wave number

Wave number is incremented between
waves

Ordering memory:

• wave-numbers

• sequence number within a wave

Spring 2006 471 23

WaveScalar Tag-matching

WaveScalar tag

• thread identifier

• wave number

Token: tag & value

<ThreadID:Wave#> . value

+

<2:5>.3 <2:5>.6

<2:5>.9

Spring 2006 471 24

Single-thread Performance

Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a
m
m
p

a
r
t

e
q
u
a
k
e

g
z
ip

m
c
f

tw
o
lf

d
jp
e
g

m
p
e
g
2
e
n
c
o
d
e

ra
w
d
a
u
d
io

a
v
e
r
a
g
e

A
I
P
C

WS

OOO

Spring 2006 471 25

Single-thread Performance per Area

Spring 2006 471 26

Multithreading the WaveCache

Architectural-support for WaveScalar threads

• instructions to start & stop memory orderings, i.e., threads

• memory-free synchronization to allow exclusive access to data

(thread communicate instruction)

• fence instruction to allow other threads to see this one!s memory

ops

Combine to build threads with multiple granularities

• coarse-grain threads: 25-168X over a single thread; 2-16X over

CMP, 5-11X over SMT

• fine-grain, dataflow-style threads: 18-242X over single thread

• combine the two in the same application: 1.6X or 7.9X -> 9X

Spring 2006 471 27

Creating & Terminating a Thread

Spring 2006 471 28

Thread Creation Overhead

Spring 2006 471 29

Performance of Coarse-grain Parallelism

Spring 2006 471 30

CMP Comparison

Spring 2006 471 31

Performance of Fine-grain Parallelism

Relies on:

Cheap synchronization

Load once, pass data (not load/compute/store)

Spring 2006 471 32

Building the WaveCache

RTL-level implementation [ISCA 06]

• some didn!t believe it could be built in a normal-sized chip

• some didn!t believe it could achieve a decent cycle time and load-
use latencies

• Verilog & Synopsis CAD tools

Different WaveCache!s for different applications

• 1 cluster: low-cost, low power, single-thread or embedded

• 42 mm2 in 90 nm process technology, 2.2 AIPC on Splash2

• 16 clusters: multiple threads, higher performance: 378 mm2 , 15.8
AIPC

Board-level FPGA implementation

• OS & real application simulations

Spring 2006 471 33

Compiling for the WaveCache

Eliminating dataflow control flow instructions [PACT 06]

• some didn!t believe it could be built in a normal-sized chip

• some didn!t believe it could achieve a decent cycle time and load-
use latencies

• Verilog & Synopsis CAD tools

Different WaveCache!s for different applications

• 1 cluster: low-cost, low power, single-thread or embedded

• 42 mm2 in 90 nm process technology, 2.2 AIPC on Splash2

• 16 clusters: multiple threads, higher performance: 378 mm2 , 15.8
AIPC

Board-level FPGA implementation

• OS & real application simulations

