CSE 490 G Introduction to Data Compression Winter 2006

Course Policies Introduction to Data Compression Entropy Prefix Codes

Instructors

- Instructor
 - Richard Ladner
 - ladner@cs.washington.edu
 - 206 543-9347
 - office hours: W 2:30 3:30 and Th 10 11.
- - Jenny Liu
 - jen@cs.washington.edu
 - office hours Tu noon 1 and Th 2 3.

CSE 490g - Lecture 1 - Winter 2006

Prerequisites

- CSE 142, 143
- CSE 326 or CSE 373
- · Reason for the prerequisites:
 - Data compression has many algorithms
 - Some of the algorithms require complex data structures

CSE 490g - Lecture 1 - Winter 2006

Resources

- Text Book
 - Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufmann Publishers, 2006.
- 490g Course Web Page
- · Papers and Sections from Books
- E-mail list
 - For dissemination of information by instructor and TA
 - Please sign up

CSE 490g - Lecture 1 - Winter 2006

Engagement by Students

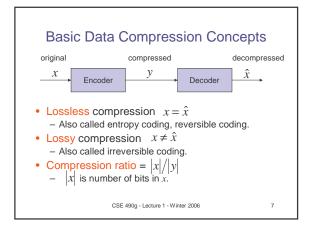
- · Weekly Assignments
 - Understand compression methodology
 - Due in class on Fridays (except midterm Friday)
 - No late assignments accepted except with prior approval
- Programming Projects
 - Bi-level arithmetic coder and decoder.
 - Image coder and decoder.
 - Build code and experiment

CSE 490g - Lecture 1 - Winter 2006

Final Exam and Grading

- Final Exam 2:30 4:20 pm Monday, March 16, 2006
- Midterm Exam Friday, February 10, 2006
- Percentages
 - Weekly assignments (25%)
 - Midterm exam (15%)
 - Projects (25%)
 - Final exam (35%)

CSE 490g - Lecture 1 - Winter 2006



Why Compress

- · Conserve storage space
- · Reduce time for transmission
 - Faster to encode, send, then decode than to send the original
- Progressive transmission
 - Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
 - Use less data to achieve an approximate answer

CSE 490g - Lecture 1 - Winter 2006

Braille

 System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

```
a so b so c so z so and the so with mother so so the so gh so constant the so gh so constant the solution of t
```

Braille Example

Clear text:

Call me Ishmael. Some years ago -- never mind how long precisely -- having \\ little or no money in my purse, and nothing particular to interest me on shore, \\ I thought I would sail about a little and see the watery part of the world. (238 characters)

Grade 2 Braille in ASCII.

,call me ,i\%mael4 ,``s ye\\$s ago -- n``e m9d h[l;g precisely -- hav+ \\ ll or no m``oy 9 my purse1 \& no?+ ``picul\\$>\\$ 6 9t]e/ me on \\%ore1 \\ ,i \\$?\\$`\\$|\\$,i wd sail ab a ll \& see ! wat]y \``p (!_w4 (203 characters)

Compression ratio = 238/203 = 1.17

CSE 490g - Lecture 1 - Winter 2006

40

Lossless Compression

- Data is not lost the original is really needed.
 - text compression
 - compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- Statistical Techniques
 - Huffman coding
 - Arithmetic coding
- Golomb coding
- Dictionary techniques
 LZW, LZ77
 - Sequitur
 - Burrows-Wheeler Method
- Standards Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

CSE 490g - Lecture 1 - Winter 2006

Lossy Compression

- Data is lost, but not too much.
 - audio
 - video
 - still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- · Major techniques include
 - Vector Quantization
 - Wavelets
 - Block transforms
 - Standards JPEG, MPEG

CSE 490g - Lecture 1 - Winter 2006

Winter 2006 12

Why is Data Compression Possible

- Most data from nature has redundancy
 - There is more data than the actual information contained in the data.
 - Squeezing out the excess data amounts to compression.
 - However, unsqueezing is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

CSE 490g - Lecture 1 - Winter 2006

13

What is Information

- · Analog data
 - Also called continuous data
 - Represented by real numbers (or complex numbers)
- · Digital data
 - Finite set of symbols {a₁, a₂, ..., a_m}
 - All data represented as sequences (strings) in the symbol set.
 - Example: {a,b,c,d,r} abracadabra
 - Digital data can be an approximation to analog data

CSE 490g - Lecture 1 - Winter 2006

.

Symbols

- · Roman alphabet plus punctuation
- ASCII 256 symbols
- Binary {0,1}
 - 0 and 1 are called bits
 - All digital information can be represented efficiently in binary
 - {a,b,c,d} fixed length representation

symbol	а	b	С	d
binary	00	01	10	11

2 bits per symbol

CSE 490g - Lecture 1 - Winter 2006

Exercise - How Many Bits Per Symbol?

- Suppose we have n symbols. How many bits (as a function of n) are needed in to represent a symbol in binary?
 - First try n a power of 2.

CSE 490g - Lecture 1 - Winter 2006

16

Discussion: Non-Powers of Two

 Can we do better than a fixed length representation for non-powers of two?

CSE 490g - Lecture 1 - Winter 2006

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
 - It is much more likely to receive an "e" than a "z".
 - In some sense "z" has more information than "e".

CSE 490g - Lecture 1 - Winter 2006

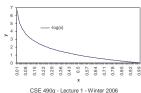
1

First-order Information

- Suppose we are given symbols {a₁, a₂, ..., a_m}.
- P(a_i) = probability of symbol a_i occurring in the absence of any other information.

 $- P(a_1) + P(a_2) + ... + P(a_m) = 1$

inf(a_i) = log₂(1/P(a_i)) bits is the information of a_i in bits.



19

23

Example

- $\{a, b, c\}$ with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
 - $-\inf(a) = \log_2(8) = 3$
 - $-\inf(b) = \log_2(4) = 2$
 - $-\inf(c) = \log_2(8/5) = .678$
- Receiving an "a" has more information than receiving a "b" or "c".

CSE 490g - Lecture 1 - Winter 2006

20

First Order Entropy

• The first order entropy is defined for a probability distribution over symbols $\{a_1, a_2, \dots, a_m\}$.

$$H = \sum_{i=1}^{m} P(a_i) \log_2(\frac{1}{P(a_i)})$$

- H is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- H is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context.

CSE 490g - Lecture 1 - Winter 2006

Entropy Examples

- {a, b, c} with a 1/8, b 1/4, c 5/8.
 H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol
- {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
 H = 3* (1/3)*log₂(3) = 1.6 bits/symbol
- Note that a standard code takes 2 bits per symbol

symbol	a	b	С
binary code	00	01	10

CSE 490g - Lecture 1 - Winter 2006

22

24

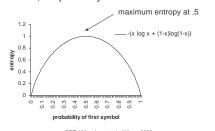
An Extreme Case

• {a, b, c} with a 1, b 0, c 0 - H = ?

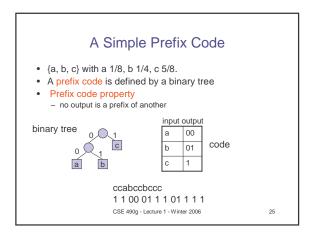
CSE 490g - Lecture 1 - Winter 2006

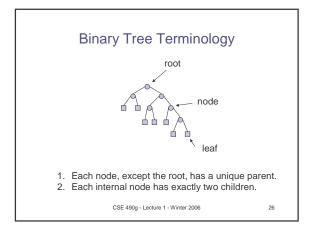
Entropy Curve

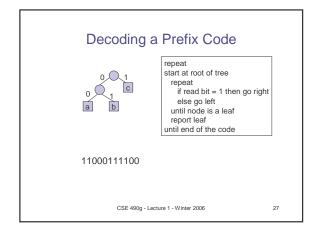
• Suppose we have two symbols with probabilities x and 1-x, respectively.

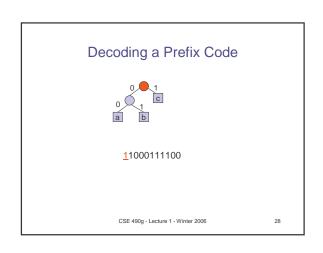


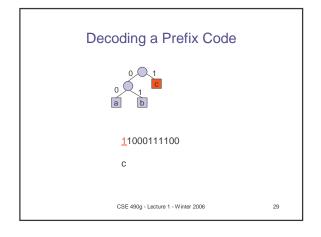
CSE 490g - Lecture 1 - Winter 2006

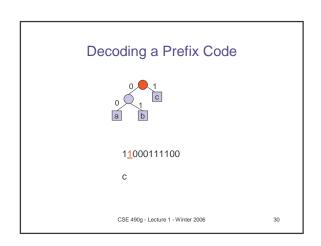


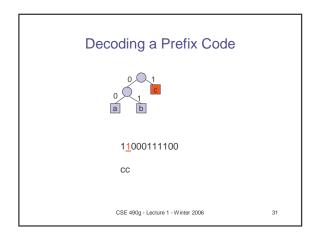


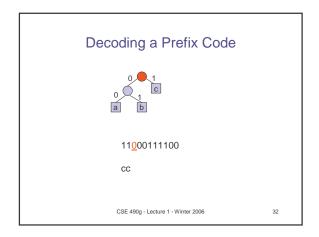


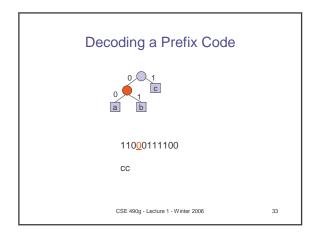


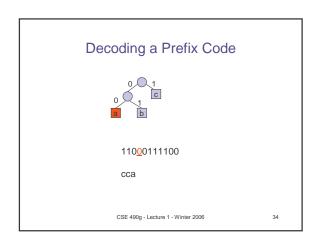


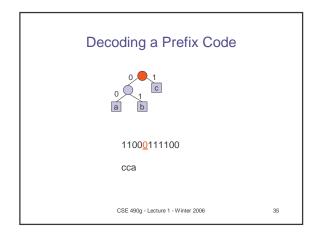


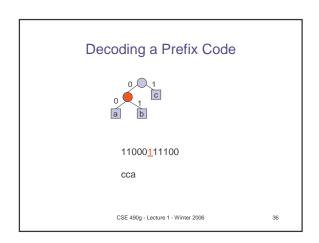


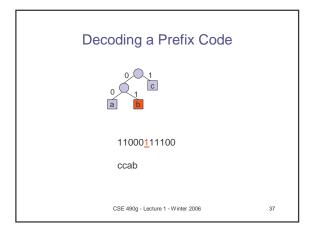


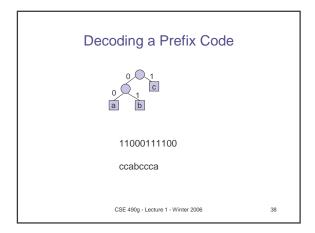




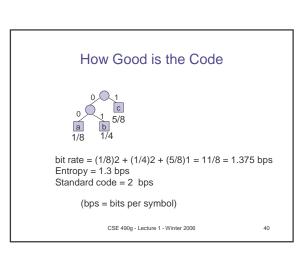








Exercise Encode/Decode Output Decode Player 1: Encode a symbol string Player 2: Decode the string Check for equality CSE 490g · Lecture 1 · Winter 2006 39



Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols {a,b,r,c,d} which compresses this string the most.

CSE 490g - Lecture 1 - Winter 2006

Design a Prefix Code 2

- Suppose we have n symbols each with probability 1/n. Design a prefix code with minimum average bit rate.
- Consider n = 2,3,4,5,6 first.

CSE 490g - Lecture 1 - Winter 2006

42