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Introduction to Data Compression
Winter 2006

Huffman Coding

Huffman Coding

Huffman (1951)

« Uses frequencies of symbols in a string to build a
variable rate prefix code.

— Each symbol is mapped to a binary string.

— More frequent symbols have shorter codes.

— No code is a prefix of another.

« Example: 0 .
ao %
b 100 { 0 1
c 101 5 E
d1

1 0 1
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Variable Rate Code Example

e Example: a 0,b 100,c 101,d 11
» Coding:

— aabddcaa = 16 bits

— 00100 11 11 101 0 0= 14 bits

 Prefix code ensures unique decodability.
- 00100111110100

—aabddcaa
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Cost of a Huffman Tree
e Letpy, Py, ..., Py be the probabilities for the
symbols a;, a,, ... ,a,, respectively.
« Define the cost of the Huffman tree T to be

cm=3pr

where r; is the length 'of the path from the root
to a;.

« C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the bit
rate of the code.
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Example of Cost

e Example: a 1/2,b 1/8,c 1/8,d 1/4

%%,
< a
/%

C(M)=1x1/2+3x1/8+3x1/8+2x1/4=1.75
a b c d
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Huffman Tree

* Input: Probabilities p,, p,, ..., p,, for symbols
a,, ay, ... ,a,, respectively.
¢ QOutput: A tree that minimizes the average

number of bits (bit rate) to code a symbol.
That is, minimizes

m
HC(T) = Zp,r, bit rate
i=1
where r; is the length of the path from the root
to a;. This is the Huffman tree or Huffman
code
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Optimality Principle 1
¢ In a Huffman tree a lowest probability symbol
has maximum distance from the root.

— If not exchanging a lowest probability symbol with
one at maximum distance will lower the cost.

p smallest T
p<q
k <h
l q
p

C(T") = C(T) + hp - hg + kq - kp = C(T) - (h-k)(g-p) < C(T)
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Optimality Principle 2

¢ The second lowest probability is a sibling of
the smallest in some Huffman tree.
— If not, we can move it there not raising the cost.

T T p smallest T
K T g 2nd smallest
e q<r

q k<h r
l |
q p

C(T") = C(T) + hq - hr + kr - kg = C(T) - (h-k)(r-q) < C(T)
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Optimality Principle 3
» Assuming we have a Huffman tree T whose two
lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.
— The resulting tree is optimal for the new symbol set.

—‘7 p smallest
q 2nd smallest

i q+p

C(T) = C(T) + (h-1)(p+q) - hp -hg = C(T) - (p+q)
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Optimality Principle 3 (cont’)

¢ If T" were not optimal then we could find a

lower cost tree T”. This will lead to a lower

cost tree T for the original alphabet.

T ™ ™
a+p
q+p q p

C(T")=C(T")+p+q<C(T)+p+q=C(T) whichis a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise
2. Find the two lowest probability symbols with
probabilities p and g respectively.
3. Replace these with a new symbol with
probability p + q.
4. Solve the problem recursively for new symbols.
Replace the leaf with the new symbol with an
internal node with two children with the old symbols.

o1
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Iterative Huffman Tree Algorithm

form a node for each symbol a; with weight p;;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

minl := delete-min;

min2 := delete-min;

create a new node n;

n.weight := minl.weight + min2.weight;

n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

« P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

4 1 .3 1 1
& o @ [e]
4 P 3 1
[al O [d]
[b] [e]
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Example of Huffman Tree Algorithm (2)

.3 1
& .I
[b] [e]
I’}

3

4 3
[a] O
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Example of Huffman Tree Algorithm (3)

Blw
Qw
Elew
Bl
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Example of Huffman Tree Algorithm (4)
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Huffman Code

average number of bits per symbol is
Ax1+.1x4+.3x2+.1x3+.1x4=21

1110
10
110
1111

D Q0T
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Optimal Huffman Code vs. Entropy
+ P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
Entropy

H =-(.4 xlog,(.4) + .1 x log,(.1) + .3 x 10g,(.3)
+.1 xlog,(.1) +.1 x log,(.1))
= 2.05 bits per symbol

Huffman Code

HC=4x1+.1x4+3x2+.1x3+.1x4
= 2.1 bits per symbol
pretty good!
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In Class Exercise

* P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/186,
P(e) = 1/16

« Compute the Huffman tree and its bit rate.

» Compute the Entropy

e Compare

e Hint: For the tree change probabilities to be
integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.
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Quality of the Huffman Code
« The Huffman code is within one bit of the entropy

lower bound.
H<HC<H+1

« Huffman code does not work well with a two symbol
alphabet.
— Example: P(0) = 1/100, P(1) = 99/100
— HC =1 bits/symbol
0 o 1
— H =-((1/100)*l0g,(1/100) + (99/100)log,(99/100))
= .08 bits/symbol
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Powers of Two

« If all the probabilities are powers of two then
HC=H
 Proof by induction on the number of symbols.

Letp, <p, < ... £p, be the probabilities that add up
tol

If n =1 then HC = H (both are zero).

If n > 1 then p, = p, = 2* for some k, otherwise the
sum cannot add up to 1.

Combine the first two symbols into a new symbol of
probability 2% + 2k = 2-k+1,
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Powers of Two (Cont.)
By the induction hypothesis
HC(p, +P;.P5.-.P,) =H(P, +P,.P31 D)
=0, +P.)log(p: +P:) = 3-plog,(p)

.
=-2""o0g,(2™")= > plog,(p)
i=3
=-2""(log,(27)+1) - >_plog,(p,)
=3
=-2%l0g,(27*)-2™*log, (27*) - Zn',p.logz(p‘) -2k -2

=-3 plog,(p)~(p +P2)
=H(PLP2:Py) ~ (P2 +P,)
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Powers of Two (Cont.)
By the previous page,
HC(p1+p2,p3,...,pn) =H(p1xpzv---vpn)_(p1+p2)

By the properties of Huffman trees (principle 3),

HC(py.P,:--Pn) =HC(Py +P2.P5.--.P, ) +(Py +P2)

Hence,

HC(P;P2s--5Py) =H(P1, P25, Py)
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Extending the Alphabet

Assuming independence P(ab) = P(a)P(b), so
we can lump symbols together.
Example: P(0) = 1/100, P(1) = 99/100
— P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

HC = 1.083 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

* Suppose we extend the alphabet to symbols
of length k then

H<HC <H+1/k

» Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input
divisible by k
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Huffman Codes with Context

« Suppose we add a one symbol context. Thatis in
compressing a string x,X,...x, we want to take into
account x,, when encoding X,.

— New model, so entropy based on just independent
probabilities of the symbols doesn’t hold. The new entropy
model (2nd order entropy) has for each symbol a probability
for each other symbol following it.

— Example: {a,b,c}

next
a b c
a4 2 4
previpli 9 0
cl.l1 .1 .8
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Multiple Codes

next
b Code for first symbol

a 00

b 01

c 10

°

@

<

oo
B ienp

° ®orp
Ovo
Bl

2
.9
1

[b]
9

[

abbacc
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Complexity of Huffman Code Design

« Time to design Huffman Code is O(n log n)
where n is the number of symbols.

— Each step consists of a constant number of priority
queue operations (2 deletemin’s and 1 insert)
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Approaches to Huffman Codes

1. Frequencies computed for each input

— Must transmit the Huffman code or
frequencies as well as the compressed input

— Requires two passes
2. Fixed Huffman tree designed from training data

— Do not have to transmit the Huffman tree
because it is known to the decoder.

— H.263 video coder
3. Adaptive Huffman code
— One pass
— Huffman tree changes as frequencies change
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