
1

CSE 490 G
Introduction to Data Compression

Winter 2006

Huffman Coding

CSE 490g - Lecture 2 - Winter 2006 2

Huffman Coding
• Huffman (1951)
• Uses frequencies of symbols in a string to build a

variable rate prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:
a 0
b 100
c 101
d 11

b c

a

d

0

0

0

1

1

1

CSE 490g - Lecture 2 - Winter 2006 3

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11
• Coding:

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

CSE 490g - Lecture 2 - Winter 2006 4

Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the

symbols a1, a2, ... ,am, respectively.

• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the bit
rate of the code.

i

m

1i
irpC(T) �

=

=

CSE 490g - Lecture 2 - Winter 2006 5

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a b c d

CSE 490g - Lecture 2 - Winter 2006 6

Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai. This is the Huffman tree or Huffman
code

i

m

1i
irpHC(T) �

=

= bit rate

2

CSE 490g - Lecture 2 - Winter 2006 7

Optimality Principle 1
• In a Huffman tree a lowest probability symbol

has maximum distance from the root.
– If not exchanging a lowest probability symbol with

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k

CSE 490g - Lecture 2 - Winter 2006 8

Optimality Principle 2

• The second lowest probability is a sibling of
the smallest in some Huffman tree.
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k

CSE 490g - Lecture 2 - Winter 2006 9

Optimality Principle 3
• Assuming we have a Huffman tree T whose two

lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h

CSE 490g - Lecture 2 - Winter 2006 10

Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’. This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction

CSE 490g - Lecture 2 - Winter 2006 11

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise

2. Find the two lowest probability symbols with
probabilities p and q respectively.

3. Replace these with a new symbol with
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an

internal node with two children with the old symbols.

CSE 490g - Lecture 2 - Winter 2006 12

Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.

3

CSE 490g - Lecture 2 - Winter 2006 13

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

CSE 490g - Lecture 2 - Winter 2006 14

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3

CSE 490g - Lecture 2 - Winter 2006 15

Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6

CSE 490g - Lecture 2 - Winter 2006 16

Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1

CSE 490g - Lecture 2 - Winter 2006 17

Huffman Code

a

b

c

d

e

a 0
b 1110
c 10
d 110
e 1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1

CSE 490g - Lecture 2 - Winter 2006 18

Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
+ .1 x log2(.1) + .1 x log2(.1))

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

4

CSE 490g - Lecture 2 - Winter 2006 19

In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

• Compute the Huffman tree and its bit rate.
• Compute the Entropy

• Compare
• Hint: For the tree change probabilities to be

integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.

CSE 490g - Lecture 2 - Winter 2006 20

Quality of the Huffman Code

• The Huffman code is within one bit of the entropy
lower bound.

• Huffman code does not work well with a two symbol
alphabet.
– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

1HHCH +≤≤

1 0

10

CSE 490g - Lecture 2 - Winter 2006 21

Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.
Let p1 < p2 < ... < pn be the probabilities that add up

to 1

If n = 1 then HC = H (both are zero).
If n > 1 then p1 = p2 = 2-k for some k, otherwise the

sum cannot add up to 1.
Combine the first two symbols into a new symbol of

probability 2-k + 2-k = 2-k+1.

HHC =

CSE 490g - Lecture 2 - Winter 2006 22

Powers of Two (Cont.)
By the induction hypothesis

)p(p)p,...,p,H(p

)p(p)(plogp

22)(plogp)(2log2)(2log2

)(plogp1))(2(log2

)(plogp)(2log2

)(plogp)p(p)logp(p-

)p,...,p,pH(p)p,...,p,pHC(p

21n21

21

n

1i
i2i

kk
n

3i
i2i

k
2

kk
2

k

n

3i
i2i

k
2

1k

n

3i
i2i

1k
2

1k

n

3i
i2i21221

n321n321

+−=

+−−=

−−−−−=

−+−=

−−=

−++=

+=+

�

�

�

�

�

=

−−

=

−−−−

=

−+−

=

+−+−

=

CSE 490g - Lecture 2 - Winter 2006 23

Powers of Two (Cont.)
By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =

CSE 490g - Lecture 2 - Winter 2006 24

Extending the Alphabet
• Assuming independence P(ab) = P(a)P(b), so

we can lump symbols together.
• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit

5

CSE 490g - Lecture 2 - Winter 2006 25

Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input

divisible by k

1/kHHCH +≤≤

CSE 490g - Lecture 2 - Winter 2006 26

Huffman Codes with Context
• Suppose we add a one symbol context. That is in

compressing a string x1x2...xn we want to take into
account xk-1 when encoding xk.
– New model, so entropy based on just independent

probabilities of the symbols doesn’t hold. The new entropy
model (2nd order entropy) has for each symbol a probability
for each other symbol following it.

– Example: {a,b,c}

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

CSE 490g - Lecture 2 - Winter 2006 27

Multiple Codes

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a 00
b 01
c 10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8

CSE 490g - Lecture 2 - Winter 2006 28

Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n)
where n is the number of symbols.
– Each step consists of a constant number of priority

queue operations (2 deletemin’s and 1 insert)

CSE 490g - Lecture 2 - Winter 2006 29

Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or

frequencies as well as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree

because it is known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change

