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Huffman Coding
• Huffman (1951)
• Uses frequencies of symbols in a string to build a 

variable rate prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:   
a  0
b  100
c  101
d  11

b c

a

d

0

0

0

1

1

1
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Variable Rate Code Example

• Example:   a  0, b  100, c  101, d  11
• Coding: 

– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a 
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Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the 

symbols a1, a2, ... ,am, respectively.

• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root 
to ai.

• C(T) is the expected length of the code of a 
symbol coded by the tree T.   C(T) is the bit 
rate of the code.
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Example of Cost

• Example:   a  1/2, b  1/8, c  1/8, d  1/4

b c

a

d
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T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a            b             c             d

CSE 490g - Lecture 2 - Winter 2006 6

Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols 
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average 
number of bits (bit rate) to code a symbol. 
That is, minimizes

where ri is the length of the path from the root 
to ai.  This is the Huffman tree or Huffman 
code
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Optimality Principle 1
• In a Huffman tree a lowest probability symbol 

has maximum distance from the root.
– If not exchanging a lowest probability symbol with 

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k
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Optimality Principle 2

• The second lowest probability is a sibling of 
the smallest in some Huffman tree. 
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r
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q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k
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Optimality Principle 3
• Assuming we have a Huffman tree T whose two 

lowest probability symbols are siblings at 
maximum depth, they can be replaced by a new 
symbol whose probability is the sum of their 
probabilities.  
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h
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Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a 
lower cost tree T’’.  This will lead to a lower 
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal.  Otherwise

2. Find the two lowest probability symbols with 
probabilities p and q respectively.

3. Replace these with a new symbol with 
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an 

internal node with two children with the old symbols.

CSE 490g - Lecture 2 - Winter 2006 12

Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

CSE 490g - Lecture 2 - Winter 2006 14

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3
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Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6
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Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1
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Huffman Code

a

b

c

d

e

a   0
b   1110
c   10
d   110
e   1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1
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Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3) 
+ .1 x log2(.1) + .1 x log2(.1)) 

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
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In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, 
P(e) = 1/16

• Compute the Huffman tree and its bit rate.
• Compute the Entropy

• Compare
• Hint: For the tree change probabilities to be 

integers: a:8, b:4, c:2, d:1, e:1.  Normalize at 
the end.
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Quality of the Huffman Code

• The Huffman code is within one bit of the entropy 
lower bound. 

• Huffman code does not work well with a two symbol 
alphabet.
– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

1HHCH +≤≤

1 0

10
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Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.
Let p1 < p2 < ... < pn be the probabilities that add up 

to 1

If n = 1 then HC = H (both are zero).
If n > 1 then p1 = p2 = 2-k for some k, otherwise the 

sum cannot add up to 1. 
Combine the first two symbols into a new symbol of 

probability 2-k + 2-k = 2-k+1.

HHC =
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Powers of Two (Cont.)
By the induction hypothesis
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Powers of Two (Cont.)
By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =
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Extending the Alphabet 
• Assuming independence P(ab) = P(a)P(b), so 

we can lump symbols together.
• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000, 
P(11) = 9801/10000. 

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols 
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input 

divisible by k

1/kHHCH +≤≤
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Huffman Codes with Context
• Suppose we add a one symbol context.  That is in 

compressing a string x1x2...xn we want to take into 
account xk-1 when encoding xk.
– New model, so entropy based on just independent 

probabilities of the symbols doesn’t hold.  The new entropy 
model (2nd order entropy) has for each symbol a probability 
for each other symbol following it.  

– Example: {a,b,c}

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1 .8

prev

next
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Multiple Codes

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a  00
b  01
c  10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8
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Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n) 
where n is the number of symbols.
– Each step consists of a constant number of priority 

queue operations (2 deletemin’s and 1 insert)
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Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or 

frequencies as well as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree 

because it is known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change


