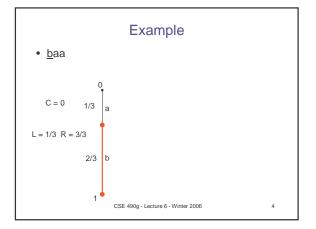
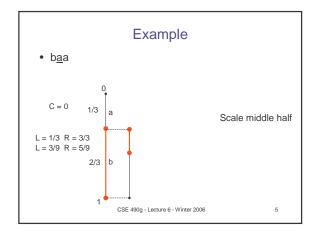
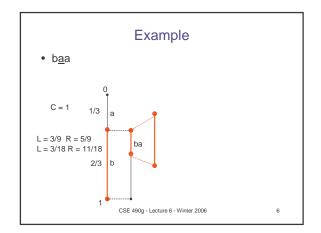
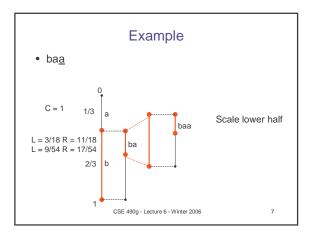
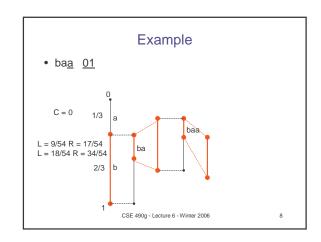

## Scaling

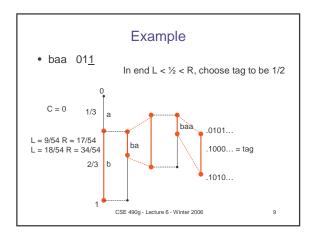

- Scaling:


   By scaling we can keep L and R in a reasonable range of values so that W = R L does not underflow.
  - The code can be produced progressively, not at the end.
  - Complicates decoding some.


CSE 490g - Lecture 6 - Winter 2006

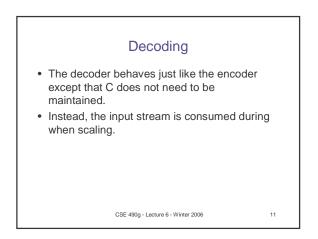

2



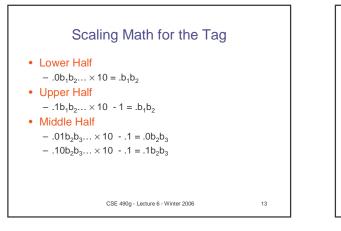


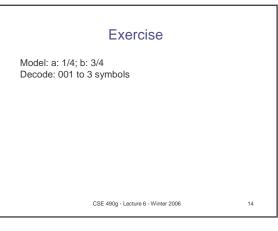


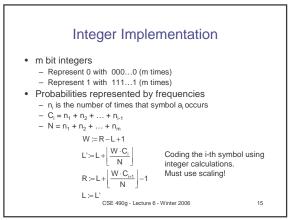


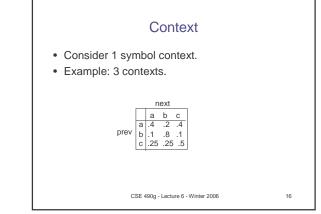


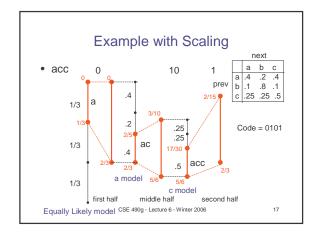


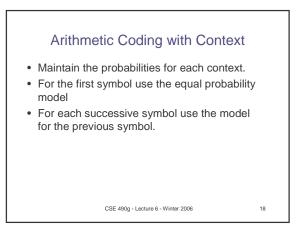













|  | Adaptation <ul> <li>Simple solution – Equally Probable Model. <ul> <li>Initially all symbols have frequency 1.</li> <li>After symbol x is coded, increment its frequency by 1</li> <li>Use the new model for coding the next symbol</li> </ul> </li> <li>Example in alphabet a,b,c,d</li> </ul> |  |  |  |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|  | a a b a a c       After aabaac is encoded         a 1 2 3 3 4 5 5       The probability model is         b 1 1 2 2 2 2       a 5/10         c 1 1 1 1 1 2       c 2/10         d 1 1 1 1 1 1 1       c 2/10                                                                                     |  |  |  |  |
|  | CSE 490g - Lecture 6 - Winter 2006 19                                                                                                                                                                                                                                                           |  |  |  |  |

| Zero Frequency Problem                                                                                                                                                                                                                                                                                                                     |                          |                                                      |                                                                                                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>How do we weight symbols that have not occurred yet.</li> <li>Equal weights? Not so good with many symbols</li> <li>Escape symbol, but what should its weight be?</li> <li>When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)</esc></li> </ul> |                          |                                                      |                                                                                                    |  |  |
| b<br>c                                                                                                                                                                                                                                                                                                                                     | 0 1<br>0 0<br>0 0<br>0 0 | 2 2 3 4 4<br>0 1 1 1 1<br>0 0 0 0 0 1<br>0 0 0 0 0 0 | After aabaac is encoded<br>The probability model is<br>a 4/7 b 1/7<br>c 1/7 d 0<br><esc> 1/7</esc> |  |  |
| CSE 490g - Lecture 6 - Winter 2006 20                                                                                                                                                                                                                                                                                                      |                          |                                                      |                                                                                                    |  |  |

## PPM

- · Prediction with Partial Matching - Cleary and Witten (1984)
- State of the art arithmetic coder - Arbitrary order context
  - The context chosen is one that does a good prediction given the past
  - Adaptive
- Example
  - Context "the" does not predict the next symbol "a" well. Move to the context "he" which does.

CSE 490g - Lecture 6 - Winter 2006

Arithmetic vs. Huffman • Both compress very well. For m symbol grouping. - Huffman is within 1/m of entropy. - Arithmetic is within 2/m of entropy. Context Huffman needs a tree for every context. - Arithmetic needs a small table of frequencies for every context. Adaptation - Huffman has an elaborate adaptive algorithm - Arithmetic has a simple adaptive mechanism. Bottom Line - Arithmetic is more flexible than Huffman. CSE 490g - Lecture 6 - Winter 2006 22

•

21