

Solution A

- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of $x_{1} x_{2} \ldots x_{n}$ then $x_{n+1} x_{n+2} \ldots x_{n+k}$ can be coded by <j,k> where j is the beginning of the match.
- Example
$\frac{\text { ababababa }}{\text { coded }}$ babababababababab....
$\frac{\text { ababababa }}{<2,8>}$

The Dictionary is Implicit

- Ziv and Lempel, 1977
- Use the string coded so far as a dictionary.
- Given that $x_{1} x_{2} \ldots x_{n}$ has been coded we want to code $x_{n+1} x_{n+2} \ldots x_{n+k}$ for the largest k possible.

Solution A - If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of $x_{1} x_{2} \ldots x_{n}$ then $x_{n+1} x_{n+2} \ldots x_{n+k}$ can be coded by <j,k> where j is the beginning of the match. - Example $\begin{aligned} & \frac{\text { ababababa }}{\text { coded }} \text { babababababababab.... } \\ & \frac{\text { ababababa }}{\frac{\text { babababa babababab.... }}{<2,8>}} \end{aligned}$
CSE 490g - Lecture 8 - Winter 20063

Solution A Problem

- What if there is no match at all in the dictionary?
ababababa cabababababababab.... coded
- Solution B. Send tuples $<j, k, x>$ where - If $k=0$ then x is the unmatched symbol
- If $k>0$ then the match starts at j and is k long and the unmatched symbol is x.

Solution B

- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of $x_{1} x_{2} \ldots x_{n}$ and $x_{n+1} x_{n+2} \cdots x_{n+k} x_{n+k+1}$ is not then $x_{n+1} x_{n+2} \cdots x_{n+k}$ x_{n+k+1} can be coded by
$<j, k, x_{n+k+1}>$
where j is the beginning of the match.
- Examples

$$
\begin{aligned}
& \text { ababababa cabababababababab.... } \\
& \frac{\text { ababababa }}{<0} \frac{\text { ababababab }}{} \text { ababab.... } \\
& \text { CSE } 490 \mathrm{~g} \text { - Lecture } 8 \text { - Winter } 2006
\end{aligned}
$$

Solution B Example

$$
\begin{aligned}
& \underline{a} \text { bababababababababababab..... } \\
& <0,0, a> \\
& \underline{a} \underline{b} \text { ababababababababababab..... } \\
& <0,0, b> \\
& \underline{a} \underline{b} \frac{a b a}{<1,2, a>} \\
& \underline{a} \underline{b} \frac{a b a}{} \frac{b a b a b}{<2,4, b>} \text { ababababababab.... } \\
& \underline{a} \underline{b} \frac{a b a}{} \frac{b a b a b}{} \frac{a b a b a b a b a b a}{<1,10, a>}
\end{aligned}
$$

Surprise Decoding

$$
\begin{array}{ll}
<0,0, a><0,0, b><1,22, \$> \\
& \\
<0,0, a> & a \\
<0,0, b> & b \\
<1,22, \$> & a \\
<2,21, \$> & b \\
<3,20, \$> & a \\
<4,19, \$> & b \\
\ldots & \\
<22,1, \$> & b \\
<23,0, \$> & \$
\end{array}
$$

Surprise Decoding		
$<0,0, a\rangle<0,0, b><1,22, \$>$		
$\begin{aligned} & <0,0, \mathrm{a}> \\ & <0,0, \mathrm{~b}> \end{aligned}$	$a-$	
<1,22,\$>		
<2,21,\$>		
<3,20,\$>		
<4,19,\$>		
<22,1,\$>	b	
<23,0,\$>	\$	
CSE 490g - Lecture 8 - Winter 2006		9

Solution C

- The matching string can include part of itself!
- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of

$$
x_{1} x_{2} \ldots x_{n} x_{n+1} x_{n+2} \ldots x_{n+k}
$$

that begins at $j \leq n$ and $x_{n+1} x_{n+2} \cdots x_{n+k} x_{n+k+1}$ is not then $x_{n+1} x_{n+2} \ldots x_{n+k} x_{n+k+1}$ can be coded by $<j, k, x_{n+k+1}>$

In Class Exercise

- Use Solution C to code the string - abaabaaabaaaab\$
- aaaabaaabaabab\$

Bounded Buffer - Sliding Window

- We want the triples $<j, k, x>$ to be of bounded size. To achieve this we use bounded buffers.
- Search buffer of size s is the symbols $x_{n-s+1} \ldots x_{n}$ j is then the offset into the buffer.
- Look-ahead buffer of size t is the symbols $x_{n+1} \cdots x_{n+t}$
- Match pointer can start in search buffer and go into the look-ahead buffer but no farther.

Sliding window \begin{tabular}{ccc}
match pointer \& uncoded text pointer

search buffer
coded
:---:
uncoded

CSE 490g - Lecture 8 - Winter 2006
\end{tabular}

Search in the Sliding Window			
a fl			
a ${ }_{\text {aaablababaaab }}$	2	1	
a aaabababaaab	2	2	
a aaabababaab	2	3	
a aaabababaaab	2	4	
a aaabababáaabs	2	5	${ }_{\ll 2,5, a>}$

Coding Example$s=4, t=4, a=3$		
	tuple	
-aaaabababaaab	<0, 0, a>	
alaabababaaab\$	<1, $3, \mathrm{~b}$ >	
a aaabababaaab\$	<2, 5 , a>	
aaaabababaalab\$	<4,2, \$>	
CSE 4099. Leatues - Winere 2006		14

Coding the Tuples

- Simple fixed length code

$$
\begin{gathered}
\left\lceil\log _{2}(\mathrm{~s}+1)\right\rceil+\left\lceil\log _{2}(\mathrm{~s}+\mathrm{t}+1)\right\rceil+\left\lceil\log _{2} \mathrm{a}\right\rceil \\
\mathrm{s}=4, \mathrm{t}=4, \mathrm{a}=3 \quad \text { tuple } \quad \text { fixed code } \\
<2,5, \mathrm{a}> \\
010010100
\end{gathered}
$$

- Variable length code using adaptive Huffman or arithmetic code on Tuples
- Two passes, first to create the tuples, second to code the tuples
- One pass, by pipelining tuples into a variable length coder

Notes on LZ77

- Very popular especially in unix world
- Many variants and implementations - Zip, Gzip, PNG, PKZip,Lharc, ARJ
- Tends to work better than LZW
- LZW has dictionary entries that are never used
- LZW has past strings that are not in the dictionary
- LZ77 has an implicit dictionary. Common tuples are coded with few bits.

