CSE 490 G
Introduction to Data Compression
Winter 2006
Sequitur

Sequitur

- Nevill-Manning and Witten, 1996.
- Uses a context-free grammar (without recursion) to represent a string.
- The grammar is inferred from the string.
- If there is structure and repetition in the string then the grammar may be very small compared to the original string.
- Clever encoding of the grammar yields impressive compression ratios.
- Compression plus structure!

Context-Free Grammars

- Invented by Chomsky in 1959 to explain the grammar of natural languages.
- Also invented by Backus in 1959 to generate and parse Fortran.
- Example:
- terminals: b, e
- non-terminals: S, A
- Production Rules:
$\mathrm{S} \rightarrow \mathrm{SA}, \mathrm{S} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{bSe}, \mathrm{A} \rightarrow$ be
$-S$ is the start symbol

Arithmetic Expressions

- $S \rightarrow S+T$
$S \rightarrow T$
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{F}$
$\mathrm{F} \rightarrow \mathrm{a}$
$\mathrm{F} \rightarrow(\mathrm{S})$

Overview of Grammar Compression

Sequitur Example (1)
bbebeebebebbebee
$\mathrm{s} \rightarrow \mathrm{b}$
CSE 490g - Lecture 9 - Winter 2006

Sequitur Example (2)	
bbebeebebebbebee	
s \rightarrow bb	
cSE 490g - Lecture 9 - Winter 2006	9

Sequitur Example (3)

bbebeebebebbebee
$S \rightarrow$ bbe

Sequitur Example (4)
bbebeebebebbebee
$S \rightarrow$ bbeb

Sequitur Example (5)
bbebeebebebbebee
$S \rightarrow$ bbebe \quad Enforce digram uniqueness be occurs twice.
Create new rule $\mathrm{A} \rightarrow$ be.

Sequitur Example (6) bbebeebebebbebee $\mathrm{S} \rightarrow \mathrm{bAA}$ $\mathrm{A} \rightarrow \mathrm{be}$
CSE 490g - Lecture 9 - Winter 2006

Sequitur Example (7) sbebeebebebbebee $\mathrm{s} \rightarrow \mathrm{bAAe}$ be	
CSE 490g - Lecture 9 - Winter 2006	

Sequitur Example (9) bbebeebebebbebee	
S \rightarrow bAAebe A be	Enforce digram uniqueness. be occurs twice. Use existing rule $A \rightarrow$ be.
CSE 490g - Lecture 9 - Winter 2006	

Sequitur Example (10)
Sequitur Example (11)
bbebeebebebbebee
$S \rightarrow$ bAAeAb
$\mathrm{A} \rightarrow$ be

Sequitur Example (12) bbebeebebebbebee	
S \rightarrow bAAeAbe $\mathrm{A} \rightarrow$ be	Enforce digram uniqueness. be occurs twice. Use existing rule A \rightarrow be.
CSE 490g - Lecture 9 - Winter 2006	

Sequitur Example (14)
bbebeebebebbebee
$\mathrm{s} \rightarrow \mathrm{bBeB}$ $\mathrm{B} \rightarrow \mathrm{be}$ BA
CSE 490g - Lecture 9 - Winter 2006

Sequitur Example (15)

bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBb}$
$\mathrm{A} \rightarrow$ be
$B \rightarrow A A$

Sequitur Example (16)
bbebeebebebbebee
$\mathrm{S} \rightarrow \mathrm{bBeBbb}$
$A \rightarrow b e$
$B \rightarrow A A$

Sequitur Example (19) bbebeebebebbebee A \rightarrow bBeBbAb B \rightarrow AA	
CSE 4909 - Lecture 9 - Winter 2006	

Sequitur Example (21)

bbebeebebebbebee

$\mathrm{S} \rightarrow \mathrm{bBeBbAA}$	Enforce digram uniqueness.
$\mathrm{A} \rightarrow \mathrm{be}$	AA occurs twice.
$\mathrm{B} \rightarrow \mathrm{AA}$	Use existing rule $\mathrm{B} \rightarrow \mathrm{AA}$.

$\mathrm{A} \rightarrow$ be AA occurs twice.
$B \rightarrow A A$

Sequitur Example (22)

$\mathrm{S} \rightarrow \mathrm{bBeBbB}$	Enforce digram uniqueness.
$\mathrm{A} \rightarrow$ be	bB occurs twice.
$B \rightarrow A A$	Create new rule $\mathrm{C} \rightarrow \mathrm{bB}$.

The Hierarchy

Exercise
Use Sequitur to construct a grammar for aaaaaaaaaa $=\mathrm{a}^{10}$

CSE 490g - Lecture 9 - Winter 2006

Complexity

- The number of non-input sequitur operations applied < $2 n$ where n is the input length.
- Since each operation takes constant time, sequitur is a linear time algorithm

Sequitur Rule Complexity

- Digram Uniqueness - match an existing rule.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots \mathrm{XY} \ldots \\
& \mathrm{~B} \rightarrow \mathrm{XY}
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{B} \ldots . \\
& \mathrm{B} \rightarrow \mathrm{XY}
\end{aligned} \quad \begin{array}{ccc}
\mathrm{s} & \mathrm{r} & 2 \mathrm{~s}-\mathrm{r} \\
-1 & 0 & -2
\end{array}
$$

- Digram Uniqueness - create a new rule.

$$
\begin{array}{llll}
\mathrm{A} \rightarrow \ldots . \mathrm{XY} \ldots . \\
\mathrm{B} \rightarrow \ldots . \mathrm{XY} \ldots
\end{array} \longrightarrow \begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{C} \ldots . \\
& \mathrm{B} \rightarrow \ldots . \mathrm{C} \ldots .
\end{aligned} \begin{aligned}
& \mathrm{s} \\
& \mathrm{C} \rightarrow \mathrm{XY}
\end{aligned} \quad \begin{gathered}
\mathrm{r} \\
\end{gathered}
$$

- Rule Utility - Remove a rule.

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{A} \rightarrow \ldots \mathrm{~B} \ldots . \\
\mathrm{B} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{k}}
\end{array} & \longrightarrow \mathrm{~A} \rightarrow \ldots \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{k}} \ldots \ldots \\
-1 & \text { s } \\
\hline
\end{array} \quad \begin{array}{cc}
\mathrm{r} & 2 \mathrm{~s}-\mathrm{r} \\
-1
\end{array}
$$

Amortized Complexity Argument

Basic Encoding a Grammar

			b	000
Grammar	S \rightarrow DBD	No code		
A \rightarrow be	Symbol Code	A	010	for S needed
	$B \rightarrow$ AA	B	011	
	D \rightarrow bBe		D	100
		$\#$	101	

Grammar Code
D B D \# b e \# A A \# b B e 10001110010100000110101001010100001100139 bits
|Grammar Code $\mid=(s+r-1)\left\lceil\log _{2}(r+a)\right\rceil$
$r=$ number of rules
$s=$ sum of right hand sides
$a=$ number in original symbol alphabet

Transmission Example

Transmission Example

Transmission Example

Transmission Example			
	$T=$ Transmitt		
	$\begin{aligned} & x_{0}+x_{2} x_{2} x_{1} \\ & x_{1} a_{1} t_{1} x_{1}, \end{aligned}$		
	CsEsaga - Lexure		${ }_{50}$

Transmission Example			
$\underset{\substack{\mathrm{S} \rightarrow \mathrm{AABCa} \\ \mathrm{~A} \rightarrow \mathrm{BBB} \\ \mathrm{~B} \rightarrow \mathrm{Ct}}}{ }$	$\mathrm{T}=$ Transmitted $\mathrm{T} \operatorname{tagt}[0,1,3] 1[0,1,3] 1[1,0,2]$		
,	$\begin{aligned} & x_{0} x_{0} x_{2} x_{2} x_{1} x_{3} \\ & x_{1} x_{2} x_{2} x_{1}, x_{1} x_{1} x_{3} a g \end{aligned}$	$\begin{aligned} & l_{0}=5 \\ & a_{1}=2 \\ & =2 \\ & =2 \\ & y_{2}=2 \end{aligned}$	
	CSE 4090 Lexture - .		${ }^{51}$

Transmission Example

$\mathrm{T}=$ Transmitted
$\mathrm{A} \rightarrow \mathrm{BBB}$
$\mathrm{B} \rightarrow \mathrm{C} t$$\quad \mathrm{~T}$ tagt $[0,1,3] 1[0,1,3] 1[1,0,2]$
$\mathrm{C} \rightarrow \mathrm{ag}$
$\begin{array}{ll}\mathrm{X}_{0} t \mathrm{X}_{2} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{3} & \mathrm{I}_{0}=5 \\ \mathrm{X}_{1} \mathrm{X}_{3} t & \mathrm{I}_{1}=2 \\ \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{1} \mathrm{X}_{1} & \mathrm{I}_{2}=3 \\ \mathrm{X}_{3} \text { ag } & \mathrm{I}_{3}=2\end{array}$
t A A B C
BBB
ag

Kieffer-Yang Improvement

Compression Quality

- Neville-Manning and Witten 1997
- Kieffer and Yang developed a theoretical framework for studying these types of grammars in 2000.
- KY is universal; it achieves entropy in the limit
- Add to sequitur Reduction Rule 5:

	size	comp	gzip	sequitur	PPMC	bzip2
bib	111261	3.35	2.51	2.48	2.12	1.98
book	768771	3.46	3.35	2.82	2.52	2.42
geo	102400	6.08	5.34	4.74	5.01	4.45
obj2	246814	4.17	2.63	2.68	2.77	2.48
pic	513216	0.97	0.82	0.90	0.98	0.78
progc	38611	3.87	2.68	2.83	2.49	2.53
= First; Files from the Calgary Corpus Units in bits per character (8 bits) Compress - based on LZW gzip - based on LZ77 PPMC - adaptive arithmetic coding with context bzip2 - Burrows-Wheeler block sorting CSE 490g - Lecture 9 - Winter 2006						

Notes on Sequitur
- Yields compression and hierarchical structure
simultaneously.
- With clever encoding is competitive with the
best of the standards.
- The grammar size is not close to
approximation algorithms
- Upper = O((n/log $\left.n)^{3 / 4}\right)$; Lower $=\Omega\left(n^{1 / 3}\right)$. (Lehman,
2002)But! Practical linear time encoding and decoding. CSE 4009 - Leoture - winiter 2006

Other Grammar Based Methods

- Longest Match
- Most frequent digram
- Match producing the best compression approximation algorithms

Upper $=\mathrm{O}\left((n / \log n)^{3 / 4}\right)$; Lower $=\Omega\left(n^{1 / 3}\right) .($ Lehman, 2002
But! Practical linear time encoding and

