CSE 490 G Introduction to Data Compression Winter 2006

Video Compression

Human Perception of Video

- 30 frames per second seems to allow the visual system to integrate the discrete frames into continuous perception.
- If distorted, nearby frames in the same scene should have only small details wrong.
 - A difference in average intensity is noticeable
- Compression choice when reducing bit rate
 - skipped frames cause stop action
 - lower fidelity frames may be better

CSE 490g - Lecture 15 - Winter 2006

Applications of Digital Video

- Teleconference or video phone
 - Very low delay (1/10 second is a standard)
- Live Broadcast Video
 - Modest delay is tolerable (seconds is normal)
 - Error tolerance is needed.
- Video-in-a-can (DVD, Video-on-Demand)
 - Random access to compressed data is desired
 - Encoding can take a lot of time
- Decoding must always be at at least the frame rate.

CSE 490g - Lecture 15 - Winter 2006

Frame-by-Frame coding Frame-by-Frame coding video frames decoding each frame requires the previous frame Group-of-Frames coding Group of Frames video frames CSE 490g - Lecture 15 - Winter 2006

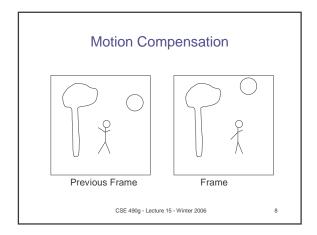
Coding Techniques

- · Frame-by-frame coding with prediction
 - Very low bit rates
 - low delay
- Not error resilient
- · Group-of-frames coding
 - Higher bit rates within a group prediction is used
 - Error resilient
 - Random Access
 - Higher delay

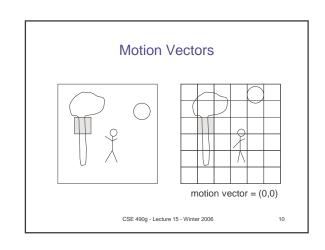
CSE 490g - Lecture 15 - Winter 2006

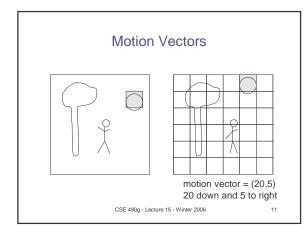
Digital Video Data

- CCIR 601 (4,2,2 scheme)
 - 13.5 MHz sample rate for luminance channel
 - 6.75 MHz sample rate for each of two chrominance channels
 - 8 bits per sample is a bit rate of 27 x 8 = 216 Mb per second
 - MPEG-SIF ½ sample rate for luminance and ¼ for chrominance – 81 Mb per second
- CIF (Common Interchange Format)
 - 288 x 352 pixels per frame for luminance channel
 - 144 x 176 pixels per frame for each of two chrominance
 - 8 bits per pixel and 30 frames per second gives 48.7 Mb per second
 - QCIF (Quarter CIF) is 1/4 the data or 12.2 Mb per second.


CSE 490g - Lecture 15 - Winter 2006

- Winter 2006

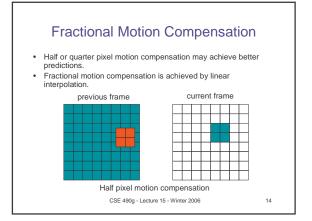

High Compression Ratios Possible


- Nearby frames are highly correlated. Use the previous frame to predict the current one.
- Need to take advantage of the fact that usually objects move very little in 1/30 th of a second.
 - Video coders use motion compensation as part of prediction

CSE 490g - Lecture 15 - Winter 2006

Block Based Motion Compensation motion compensation blocks CSE 490g - Lecture 15 - Winter 2006 9

Motion Compensation


- · For each motion compensation block
 - Find the block in the previous decoded frame that gives the least distortion.
 - If the distortion is too high then code the block independently. (intra block)
 - Otherwise code the difference (inter block)
- The previous decoded frame is used because both the encoder and decoder have access to it.

CSE 490g - Lecture 15 - Winter 2006

Issues

- Distortion measured in squared error or absolute error
 - Absolute error is quicker to calculate
- Block size
 - Too small then too many motion vectors
- Too large then there may be no good match
- Searching range to find best block
 - Too large a search range is time consuming
 - Too small then may be better matches
 - Prediction can help.
- · Prediction resolution
 - Full pixel, half-pixel, quarter-pixel resolution
 - Higher resolution takes longer, but better prediction results

CSE 490g - Lecture 15 - Winter 2006

Linear Interpolation

- Calculate an interpolated pixel as the average of overlapping pixels.
- · Better interpolation methods exist.

Half a_1 a_2 a_3 a_4

 $a = \frac{a_1}{4} + \frac{a_2}{4} + \frac{a_3}{4} + \frac{a_4}{4}$

Quarter a,

 $a = \frac{3a_1}{16} + \frac{9a_2}{16} + \frac{a_3}{16} + \frac{3a_4}{16}$

CSE 490g - Lecture 15 - Winter 2006

Rate Control

- Buffer is filled at a constant rate (almost).
- · Buffer is emptied at a variable rate.

CSE 490g - Lecture 15 - Winter 2006

16

Underflow Problem

- · Set up
 - Constant rate channel at C bits per second
 - Frame rate F in frames per second.
 - $-\ b_{i}$ is the number of bits in compressed frame i
 - Initial occupancy of buffer B
- B_i is the number of bits in the buffer at frame i

$$B_0 = B$$

 $B_{i+1} = B_i + C/F - b_i$

• Buffer should never empty $B_i \ge 0$ for all i

CSE 490g - Lecture 15 - Winter 2006

17

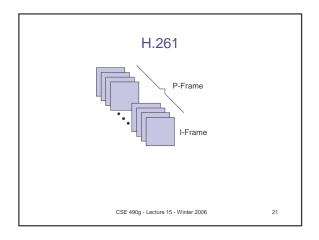
Rate Control

- The rate control buffer is seeded to allow for variability in number of bits per frame and variability in channel rate.
- Causes of variability in bits per frame.
 - Encoder does not predict well how many bits will be used in a frame - scalar quantization.
 - Encoder allocates more bits in frames that are hard to encode because they are not predicted well - scene changes.
- · Causes of channel rate variability
 - Congestion on the internet

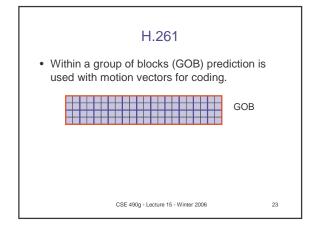
CSE 490g - Lecture 15 - Winter 2006

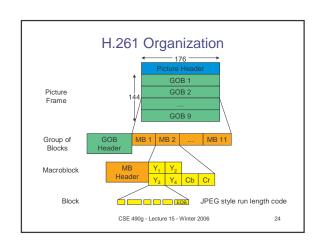
Rate Control Algorithms

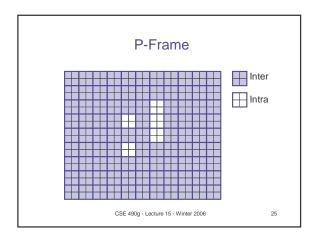
- On-line solution
 - Send a few frames to seed the buffer
 - Encoder simulates the buffer, should the buffer threaten to empty start sending more frames at lower fidelity or skip frames (decoder will interpolate skipped frames).
- · Off-line solution
 - Attempt to allocate bits to frames to assure even fidelity.
 - Seed the buffer with enough frames to prevent underflow.

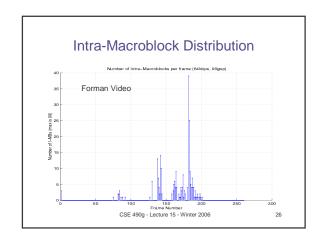

CSE 490g - Lecture 15 - Winter 2006

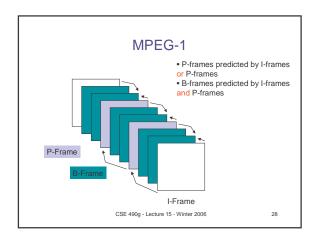

19


H.261


- Application low bit rate streaming video
- Frame-by-frame encoder
- DCT based with 8x8 coding block
 - Uses JPEG style coding
- Motion compensation based on 16x16 macroblocks.
- Half pixel motion compensation


CSE 490g - Lecture 15 - Winter 2006





MPEG-1

- Application Video coding for random access
- Group-of-frames encoder
- DCT based with 8x8 coding block
 - Uses JPEG style coding
- Motion compensation based on 16x16 macroblocks.
- Forward and Backward Prediction within a group of frames

CSE 490g - Lecture 15 - Winter 2006

27

Orders Display Order 10 9 8 7 6 5 4 3 2 1 Coding/Decoding Order 9 8 10 6 5 7 3 2 4 1 Added delay is one frame time CSE 490g - Lecture 15 - Winter 2006 29

MPEG-1 Notes

- Random access unit = Group-of-Frames
 - Called GOP for group-of-pictures
- Error resilient
 - B-frames can be damaged without propagation
- Added delay
 - Coding order different than display order
- · Encoding time consuming
 - Suitable for non-interactive applications

CSE 490g - Lecture 15 - Winter 2006

5 - Winter 2006 30

Beyond MPEG-1

- MPEG-2
 - Application independent standard
- MPEG-4
 - Multimedia applications
 - Model based coding
- H.263
 - More error resilience

CSE 490g - Lecture 15 - Winter 2006

31

Newest Trends

- H.264
 - Just out in 2003, many new featuresQuarter pixel motion compensation

 - Variable size motion blocks
 Multiple frame prediction
- 3-D Wavelet Coding
 Third dimension is time
 3-D SPIHT has been implemented
 - Delay is large because GOP is large
- GTV
 - Group testing for video
 - Group testing for video
 Bits per frame can be controlled enabling off-line rate control to succeed.

CSE 490g - Lecture 15 - Winter 2006