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Many applications need digital audio 

• Business
Internet call centers
Multimedia presentations

• Communication
Digital TV, Telephony (VoIP) & teleconferencing
Voice mail, voice annotations on e-mail, voice recording

• Entertainment
solid-state music players
150 songs on standard CD
thousands of songs on portable jukebox
Internet radio
Games
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Physiology of the ear

• Automatic gain control
muscles around 
transmission bones

• Directivity

pinna

• Boost of middle frequencies

auditory canal

• Nonlinear processing

auditory nerve

• Filter bank separation
cochlea

• Thousands of “microphones”

hair cells in cochlea
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Filter bank model

• Explains frequency-domain masking
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Frequency-domain masking
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Absolute threshold of hearing
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Example of masking

• Typical spectrum
& masking threshold

• Original sound:

• Sound after removing 
components below
the threshold
(1/3 to 1/2 of the data):
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Block signal processing

Extract
Block

Direct
Orthogonal
Transform

Inverse
Orthogonal
Transform

Append
Block

Processing

Input
Signal

Output
Signal

X xT= Px

~ ~x X= P

~X

Signal is reconstructed as a
linear combination of basis functions
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• Pro: allows adaptability

• Con: blocking artifacts

Block processing: good and bad
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Why transforms?

• More efficient signal representation
Frequency domain

Basis functions ~ “typical” signal components

• Faster processing
Filtering, compression

• Orthogonality
Energy preservation

Robustness to quantization
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Compactness of representation

• Maximum energy concentration in as few coefficients as 
possible

• For stationary random signals, the optimal basis is the 
Karhunen-Loève transform:

• Basis functions are the columns of P
• Minimum geometric mean of transform coefficient variances

λ i i xx ip R p= =, P P IT
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Sub-optimal transforms

• KLT problems:

Signal dependency

P not factorable into sparse components

• Sinusoidal transforms:

Asymptotically optimal for large blocks

Frequency component interpretation

Sparse factors - e.g. FFT
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Lapped transforms

• Basis functions have tails beyond block boundaries
Linear combinations of overlapping functions such as

generate smooth signals, without blocking artifacts
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Modulated lapped transforms

• Basis functions = cosines modulating the same low-pass 
(window) prototype h(n):

• Can be computed from the DCT or FFT

• Projection can be computed in 

operations per input point
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Fast MLT computation
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Basis functions

DCT: MLT:
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Basic architecture

TIME-TO-
FREQUENCY 
TRANSFORM

(MLT)
ORIGINAL

AUDIO
SIGNAL

MUXMASKING 
THRESHOLD 
SPECTRUM

WEIGHTING

UNIFORM 
QUANTIZER

ENTROPY 
ENCODER

ENCODED
BITSTREAM

SIDE INFO

SI

SI



12

23

Quantization of transform coefficients

• Quantization = rounding to nearest integer.
• Small range of integer values = fewer bits needed to 

represent data
• Step size T controls range of integer values

y

x

y T x T= int( / )

all values
in this range …

are mapped
to this value
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Encoding of quantized coefficients

• Typical plot of quantized transform coefficients

• Run-length + entropy coding
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Basic entropy coding

• Huffman coding: less 
frequent values have 
longer codewords

• More efficient if 
groups of values are 
assembled in a vector 
before coding

Value   Codeword
-7   '1010101010001'

-6   '10101010101'

-5   '101010100'

-4   '10101011'

-3   '101011'

-2   '1011'

-1   '01'

0   '11'

+1   '00'

+2   '100'

+3   '10100'

+4   '1010100'

+5   '1010101011'

+6   '101010101001'

+7   '1010101010000'
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Side information & more about EC

• SI: model of frequency spectrum
e.g. averages over subbands

• Quantized spectral model determines weighting
masking level used to scale coefficients

• Backward adaptation reduces need for SI
• Run-length + Vector Huffman works

Context-based AC can be better
Room for better context models via machine 
learning?
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Improved architecture
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Examples of context modeling

• For strongly voiced segments, spectral energies 
may be well predicted by a “Linear Prediction”
model, similar to those used in VoIP coders.

• For strongly periodic components, spectral energies 
may be predicted by a pitch model.

• For noisy segments, a noise-only model may allow 
for very coarse quantization lower data rate.
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Other aspects & directions

• Stereo coding
(L+R)/2 & L-R coding, expandable to multichannel
Intensity + balance coding
Mode switching – extra work for encoder only

• Lossless coding
Easily achievable via integer transforms
exactly reversible via integer arithmetic
example: lifting-based MLT (see Refs)

• Using complex subband decompositions (MCLT)
Potential for more sophisticated auditory models
Efficient encoding is an open problem

30

Contents

• Motivation

• “Sink coding”: Auditory Masking

• Block & Lapped Transforms

• Audio compression

• Examples



16

31

WMA examples:

• Original clip
(~1,400 kbps) 64 kbps (MP3) 64 kbps (WMA)

• Original clip WMA @ 32 kbps
(Internet radio)

• More examples at windowsmedia.com
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