Representation of programs

Primary goals:
¢ analysis is easy & effective
¢ just a few cases to handle
* provide support for linking things of interest
 transformations are easy
* general, across input languages & target machines

Additional goals:
e compact in memory
¢ easy to translate to and from
» tracks info for source-level debugging, profiling, etc.
* extensible (new optimizations, targets, language features)
» displayable

Craig Chambers 24 CSE 501

o

Low-level representation

Translate input programs into low-level primitive chunks,
often close to the target machine

Examples
* assembly code, virtual machine code (e.g. stack machine)

* three address code, register transfer language (RTLs)

Standard RTL operators:

assignment X 1= y;

unary op X 1= Op Y;
binary op X 1=y op Z;
address-of p = &Y;

load X 1= *(p + 0);
store *(p + 0) := X;
call x := £(...);
unary compare |op x ?

binary compare |x op y ?

Craig Chambers 26 CSE 501

.

High-level syntax-based representation

Represent source-level control structures & expressions directly

Examples
e (Attributed) AST
* Lisp S-expressions
* extended lambda calculus

Source:

for i := 1 to 10 do
alil := bli]l * 5;

end

AST:

i//lo/for\-:
S
/\ AN

/\

a 1
b i

Craig Chambers 25 CSE 501

%

.

Source:

for i := 1 to 10 do
ali]l := bli]l * 5;

end

Control flow graph containing RTL instructions:

tl i* 4

t2 := & Db

£3 = *(t2 + tl)
td := t3 * 5

ts =1 * 4

t6 := & a

*(t6 + t5) := t4
i:=1i+1

\j

Craig Chambers 27 CSE 501

%

Comparison

Advantages of high-level rep:
¢ analysis can exploit high-level knowledge of constructs
¢ probably faster to analyze
¢ easy to map to source code terms for debugging, profiling
* may be more compact

Advantages of low-level rep:

* can do low-level, machine-specific optimizations
(if target-based representation)

¢ high-level rep may not be able to express some transformations
* can have relatively few kinds of instructions to analyze
* can be language-independent

High-level rep suitable for a source-to-source or special-purpose
optimizer, e.g. inliner, parallelizer

Can mix multiple representations in single compiler
Can sequence compilers using different reps

Q: what about Java bytecodes?

Craig Chambers 28 CSE 501

o

Representing control dependences

Option 1: high-level representation
* control flow implicit in semantics of AST nodes

Option 2: control flow graph
* nodes are basic blocks
 instructions in basic block sequence side-effects

* edges represent branches
(control flow between basic blocks)

Some fancier options:
* control dependence graph,
part of program dependence graph (PDG)
[Ferrante et al. 87]
e convert into data dependences on a memory state,
in value dependence graph (VDG) [Weise et al. 94]

Craig Chambers 30 CSE 501

o

.

Components of representation

Operations

Dependences between operations
* control dependences: sequencing of operations
* evaluation of then & else arms depends on result of test
* side-effects of statements occur in right order
» data dependences: flow of values from definitions to uses
* operands computed before operation

Ideal: represent just those dependences that matter
¢ dependences constrain transformations
» fewest dependences [0 most flexibility in implementation

Craig Chambers 29 CSE 501

.

Representing data dependences

Option 1: implicitly through variable defs/uses in CFG
+ simple, source-like
— may overconstrain order of operations

— analysis wants important things explicit O
analysis can be slow

Option 2: def/use chains, linking each def to each use
+ explicit 0 analysis can be fast
- must be computed, maintained after transformations
- may be space-consuming

Some fancier options:
» static single assignment (SSA) form [Alpern et al. 88]
* value dependence graphs (VDGs)

Craig Chambers 31 CSE 501

o

Example

Craig Chambers 32 CSE 501

o

Example: reaching definitions

For each program point,
want to compute set of definitions (statements) that
may reach that point

¢ reach: are the last definition of some variable

Info = set of var- stmt bindings
E.g.:
{x-sy, Y-85 y-Sg}

Can use reaching definition info to:
* build def-use chains
* do constant & copy propagation
* detect references to undefined variables
* present use/def info to programmer

Safety rule (for these intended uses of this info):
can have more bindings than the “true” answer,
but can’'t miss any

Craig Chambers 34 CSE 501

Data flow analysis

Want to compute some info about program
¢ at program points
* to identify opportunities for improving transformations

Can model data flow analysis as solving system of constraints

» each node in CFG imposes a constraint relating info at
predecessor and successor points

* solution to constraints is result of analysis

Solution must be safe/sound
Solution can be conservative

Key issues:
* how to represent info efficiently?
* how to represent & solve constraints efficiently?
* how long does constraint solving take? does it terminate?
* what if multiple solutions are possible?
* how to synchronize transformations with analysis?

* how to know if analysis & transformations we’ve defined are
semantics-preserving?

Craig Chambers 33 CSE 501

.

Constraints for reaching definitions

Main constraints:

A simple assignment removes any old reaching defs for the lhs
and replaces them with this stmt:

¢ strong update
S!x:= ...l
infogyee = infopreq — {x— 5’| Us} U {x - s}

A pointer assignment may modify anything, but doesn’t definitely
replace anything

e weak update
Si*p = ...
infogyce = iNfopreq O {x - s | Ox [may-point-to(p)}

Other statements: do nothing
infogyce = INfOpred

Craig Chambers 35 CSE 501

o

Constraints for reaching definitions, continued

Branches pass through reaching defs to both successors
infosucc[i] = infopred, i

Merges take the union of all incoming reaching defs

* we don’t know which path is being taken at run-time
O be conservative

infosucc = Di infopred[i]

Conditions at entry to CFG: definitions of formals
infogntry = {xx - entry | Ox O formals}

Craig Chambers 36 CSE 501

o

Example

1 x :=
2y :=
3y :=
4p := ...
. X e XL
5X = . 6x =
y 7 *p :=
X
.Y .
8y := ...
Craig Chambers 38 CSE 501

/ N
Solving constraints
A given program yields a system of constraints
Need to solve constraints
For reaching definitions,
can traverse instructions in forward topological order,
computing successor info from predecessor info
¢ because of how the constraints are defined
Craig Chambers 37 CSE 501
- J
/ N
Another example
1x :=
2y :=
3y :=
4p :=
X
5x :=
%
8y := ...
Topological order not defined!
Craig Chambers 39 CSE 501
N ’ J

o

Loop terminology

loop: strongly-connected component in CFG with single entry
loop entry edge: source not in loop, target in loop

loop exit edge: the reverse

back edge: target is loop head node

loop head node: target of loop entry edge

loop tail node: source of back edge

loop preheader node:
single node that’s source of loop entry edge

nested loop: loop whose head is inside another loop

reducible flow graph: all SCC’s have single entry

Craig Chambers 40 CSE 501

o

Analysis of loops

If CFG has a loop, data flow constraints are recursively defined:

infojoop-head = iNfOloop-entry [INfOback-edge
infopack-edge = --- INfOIoop-head -+

Substituting definition of infop,ck-edge:
infoioop-head = iNfOloop-entry O (.- INfO1q0p.-head -+-)

Summarizing r.h.s. as F:
infojoop-head = F(iNfOlp0p-head)

A legal solution to constraints is a fixed-point of F

Recursive constraints can have many solutions

* want least or greatest fixed-point,
whichever corresponds to the most precise answer

How to find least/greatest fixed-point of F?
* for restricted CFGs can use specialized methods
¢ e.g. interval analysis for reducible CFGs
» for arbitrary CFGs, can use iterative approximation

Craig Chambers 42 CSE 501

.

Example

preheader

entry edge

backledge

Craig Chambers 41 CSE 501

.

Iterative data flow analysis

1. Start with initial guess of info at loop head:
infolo0p-head = gUESS

2. Solve equations for loop body:
infopack-edge = Fbody (INfOl00p-head)

infojoop-head = INfOloop-entry U INfOpack-edge

3. Test if found fixed-point:
infojoop-head = INfOI00p-head ?

A. if same, then done
B. if not, then adopt result as (better) guess and repeat:
infopack-edge’ = Fhody (INfOl0op-head)

infojpop-head” = iNfOjpop-entry O iINfOpack-edge’

infoloop-head” = ir"folt)()p-head’ ?

Craig Chambers 43 CSE 501

When does iterating work?

1. need to be able to make an initial guess

2. info™! must be closer to the fixed-point than info"
(true if Fpoqy is monotonic)

3. must eventually reach the fixed-point
in a finite number of iterations
(true if info drawn from a finite-height domain)

To reach best fixed-point, initial guess for loop head
should be optimistic

* easy choice: infogop.nead = INfOIg0p-entry
(Even if guess is overly optimistic, iteration will ensure we won'’t
stop analysis until the answer is safe.)

To speed iterative analysis, want to test guess ASAP

* avoid solving constraints outside of loop until fixed-point is
reached within loop

Craig Chambers 44 CSE 501

The example, again

1 x :=
2y :=
3y :=
4p 1=
x
5x :=
v .
8y := ...
Craig Chambers 45

CSE 501

%

