
Craig Chambers 94 CSE 501

Pointer and Alias Analysis

Aliases:
two expressions that denote same mutable memory location

Introduced through

• pointers

• call-by-reference

• array indexing

• C unions, Fortran common, equivalence

Applications of alias analysis:

• improved side-effect analysis:
if assign to one expression,
what other expressions are modified?

• if certain modified or not modified, not a problem

• if uncertain, things can get ugly

• eliminate redundant loads/stores & dead stores
(CSE & dead assign elim, for pointer ops)

• automatic parallelization of code
manipulating data structures

• ...

Craig Chambers 95 CSE 501

Kinds of alias info

Points-to analysis

• at each program point, calculate set of p→x bindings,
if p points to x

• two related problems:

• may points-to: p may point to x

• must points-to: p must point to x

Alias-pair analysis

• at each program point, calculate set of (expr1,expr2)
pairs, if expr1 and expr2 reference the same memory

• may and must alias-pair versions

Storage shape analysis

• at each program point, calculate an abstract description of
the structure of pointers etc., e.g. list-like, or tree-like, or
DAG-like, or ...

Points-to analysis is simple

Alias-pairs analysis more general than points-to analysis,
but more complicated

Storage shape analysis more abstract

Craig Chambers 96 CSE 501

A points-to analysis

At each program point, calculate set of p→x bindings,
if p points to x

Outline:

• define may version first, then consider must version

• develop algorithm in increasing stages of complexity

• pointers only to vars of scalar type

• add pointers to pointers

• add pointers to and from structures

• add pointers to dynamically-allocated storage

• add pointers to array elements

Craig Chambers 97 CSE 501

May-point-to scalars

Domain: Pow(Var × Var)

Forward flow functions:

PTp := &x(in) = in - {p→*} ∪ {p→x}

PTp := q(in) = in - {p→*} ∪ {p→v | q→v ∈ in}

Meet function: union

What about p := nil?

Craig Chambers 98 CSE 501

Must-point-to

How to define must-point-to analysis?

Option 1: analogous to may-point-to, but as must problem

• e.g. intersection is meet operation

Option 2: interpretation of may-point-to results

• if p may point to only x, then p must point to x:

must-point-to(p) = { x | {x} = may-point-to(p)}

• what if p may point to nil? p assigned an integer?

Craig Chambers 99 CSE 501

Example

6 *p := 7

7 z := *q

8 *q := 4

9 w := *p

1 x := 3

2 p := &x

3 y := 5

4 q := &y 5 q := &x

Craig Chambers 100 CSE 501

Using alias info

E.g. reaching definitions

At each program point, calculate set of x→s bindings,
if x might get its definition from stmt s

Simple flow functions:

RDs: x := ...(in) = in − {x→*} ∪ {x→s}

RDs: *p := ...(in) = in − {x→* | ∀x ∈ must-point-to(p)}
∪ {x→s | ∀x ∈ may-point-to(p)}

Craig Chambers 101 CSE 501

Reaching “right hand sides”

A variation on reaching definitions
that passes definitions through copies

x→s in set if x might get its definition from rhs of stmt s,
skipping through uninteresting copies and pointer loads
where possible

Can use reaching right-hand sides to construct def/use chains
that skip through copies, e.g. for better constant propagation

Additional flow functions:

RDs: x := y (in) = in − {x→*} ∪ {x→s’ | y→s’ ∈ in}

RDs: x := *p(in) = in − {x→*}
∪ {x→s’ | p→y ∈ may-point-to(p) ∧

y→s’ ∈ in}

Craig Chambers 102 CSE 501

Another use: "scalar replacement"

If we know that a pointer expression *p aliases a variable x
(p must point to x) at some point, then can replace *p with x

• both for load & store

Load part also known as "redundant load elimination"

Craig Chambers 103 CSE 501

Adding pointers to pointers

Now allow a pointer to point to a pointer

• loads may return pointers, stores may store pointers

New flow functions:

PTp := *q(in) = in - {p→*} ∪ {p→v | q→r ∈ in ∧ r→v ∈ in}

PT*p := q(in) = in - {r→* | {r} = in(p)}
∪ {r→v | p→r ∈ in ∧ q→v ∈ in}

Craig Chambers 104 CSE 501

Example

p := *R

*q := 9

z := *p

x := 5

y := 6

p := &x

q := &y

R := &p

*R := q

q := p

*q := 7

x := 8

int x, y, z;

int *p, *q;

int **R;

Craig Chambers 105 CSE 501

Adding pointers to structs/records/objects/...

A variable can be a structure with a collection of named fields

• a pointer can point to a field of a structure variable

• a field can hold a pointer

Introduce location domain: Loc = Var + Loc×Field

• either a variable or a location followed by a field name

Old PT domain: sets of v1→v2 pairs = Pow(Var × Var)

New PT domain: sets of l1→l2 pairs = Pow(Loc × Loc)

Some new forward flow functions:

PTp := &x.f(in) = in - {p→*} ∪ {p→x.f}

PTp := x.f (in) = in - {p→*} ∪ {p→l | x.f→l ∈ in}

PTp := (*q).f(in) = in - {p→*}
∪ {p→l | q→r ∈ in ∧ r.f→l ∈ in}

PTx.f := q (in) = in - {x.f→*} ∪ {x.f→l | q→l ∈ in}

PT(*p).f := q(in) = in - {r.f→* | {r} = in(p)}
∪ {r.f→l | p→r ∈ in ∧ q→l ∈ in}

Craig Chambers 106 CSE 501

Adding pointers to dynamically-allocated memory

p := new T

• T could be scalar, pointer, structure, ...

Issue: each execution creates a new location

Idea: generate new var of type T to stand for new location

• make Var domain unbounded

• newvar: return next unused element of Var

Flow function:

PTp := new T(in) = in - {p→*} ∪ {p→newvar}

Craig Chambers 107 CSE 501

Example

t := new Cons

(*p).next := t

p := t

lst := new Cons

p := lst

Craig Chambers 108 CSE 501

A monotonic, finite approximation

Can’t create a new variable each time analyze statement

• lattice is infinitely tall if Var domain is infinite!

• not a monotonic flow function!

One solution:
create a special summary node for each new stmt

• Loc = Var + Stmt + Loc×Field

Fixed flow function:

PTs: p := new T(in) = in - {p→*} ∪ {p→s}

Summary nodes abstract a set of possible locations
⇒ cannot strongly update a summary node

PT*p := q(in) = in - {r→* | {r} = in(p) ∧ r ∈ Loc}
∪ {r→v | p→r ∈ in ∧ q→v ∈ in}

Alternative summarization strategies:

• summary node for each type T

• k-limited summary

• maintain distinct nodes up to k links removed from root vars,
then summarize together

Craig Chambers 109 CSE 501

Adding pointers to array elements

Array index expressions can generate aliases:

a[i] aliases b[j] if:

• a aliases b and i equals j

• more generally, a and b overlap, and &a[i] = &b[j]

Can have pointers to array elements:
p := &a[i]

Can have pointer arithmetic, for array addressing:
p := &a[0]; ...; p++

How to model arrays?

Option 1: reason about array index expressions
⇒ array dependence analysis

Option 2: use a summary node to stand for all elements of the
array

