
Craig Chambers 197 CSE 501

Automatic Garbage Collection

Automatically free dead objects

• no dangling pointers, no storage leaks (maybe)

• can have faster allocation, better memory locality

General styles:

• reference counting

• tracing

• mark/sweep, mark/compact

• copying

• regions

Adjectives:

• generational

• conservative

• incremental, parallel, distributed

Craig Chambers 198 CSE 501

Reference counting

For each heap-allocated object,
maintain count of # of pointers to object

• when create object, ref count = 0

• when create new ref to object, increment ref count

• when remove ref to object, decrement ref count

• if ref count goes to zero, then delete object

proc foo() {
a := new Cons;
b := new Blob;
c := bar(a, b);
return c;

}

proc bar(x, y) {
l := x;
l.head := y;
t := l.tail;
return t;

}

Craig Chambers 199 CSE 501

Evaluation of reference counting

+ local, incremental work

+ little/no language support required

+ local ⇒ feasible for distributed systems

− cannot reclaim cyclic structures

− uses malloc/free back-end ⇒ heap gets fragmented

− high run-time overhead (10-20%)

• can delay processing of ptrs from stack
(deferred reference counting [Deutsch & Bobrow 76])

− space cost

− no bound on time to reclaim

− thread-safety?

BUT: a surprising resurgence in recent research papers

Craig Chambers 200 CSE 501

Tracing collectors

Start with a set of root pointers

• global vars

• contents of stack & registers

Traverse objects transitively from roots

• visits reachable objects

• all unvisited objects are garbage

Issues:

• how to identify pointers?

• in what order to visit objects?

• how to know an object is visited?

• how to free unvisited objects?

• how to allocate new objects?

• how to synchronize collector and program (mutator)?



Craig Chambers 201 CSE 501

Identifying pointers

“Accurate”: always know unambiguously where pointers are

Use some subset of the following to do this:

• static type info & compiler support

• run-time tagging scheme

• run-time conventions about where pointers can be

Conservative [Bartlett 88, Boehm & Weiser 88]:
assume anything that looks like a pointer might a pointer,
& mark target object reachable

+ supports GC of C, C++, etc.

What “looks” like a pointer?

• most optimistic: just aligned pointers to beginning of objects

• what about interior pointers?
off-the-end pointers?
unaligned pointers?

Miss encoded pointers (e.g. xor’d ptrs), ptrs in files, ...

Craig Chambers 202 CSE 501

Mark/sweep collection

[McCarthy 60]: stop-the-world tracing collector

Stop the application when heap fills

Trace reachable objects

• set mark bit in each object

• tracing control:

• depth-first, recursively using separate stack

• depth-first, using pointer reversal

Sweep through all of memory

• add unmarked objects to free list

• clear marks of marked objects

Restart mutator

• allocate new objects using free list

Craig Chambers 203 CSE 501

Evaluation of mark/sweep collection

+ collects cyclic structures

+ simple to implement

− “embarrassing pause” problem

− poor memory locality

• when tracing, sweeping

• when allocating, dereferencing due to heap fragmentation

− not suitable for distributed systems

Craig Chambers 204 CSE 501

Some improvements

Mark/compact collection:
when sweeping through memory, compact rather than free

• all free memory in one block at end of memory space;
no free lists

+ reduces fragmentation

+ fast allocation

− slower to sweep

− changes pointers
⇒ requires accurate info about pointers

− tricky data structures to update all pointers to moved objects



Craig Chambers 205 CSE 501

Copying collection

[Cheney 70]

Divide heap into two equal-sized semi-spaces

• mutator allocates in from-space

• to-space is empty

When from-space fills, do a GC:

• visit objects referenced by roots

• when visit object:

• copy to to-space

• leave forwarding pointer in from-space version

• if visit object again, just redirect pointer to to-space copy

• scan to-space linearly to visit reachable objects

• to-space acts like breadth-first-search work list

• when done scanning to-space:

• empty from-space

• flip: swap roles of to-space and from-space

• restart mutator

Craig Chambers 206 CSE 501

Evaluation of copying collection

+ collects cyclic structures

+ supports compaction, fast allocation automatically

+ no separate traversal stack required

+ only visits reachable objects, not all objects

− requires twice the (virtual) memory,
physical memory sloshes back and forth

• could benefit from OS support

− “embarrassing pause” problem still

− copying can be slow

− changes pointers

Craig Chambers 207 CSE 501

An improvement

Add small nursery semi-space [Ungar 84]

• nursery fits in main memory (or cache)

• mutator allocates in nursery

• GC when nursery fills

• copy nursery + from-space to to-space

• flip: empty both nursery and from-space

+ reduces cache misses, page faults

• most heap memory references satisfied in nursery?

− nursery + from-space can overflow to-space

Craig Chambers 208 CSE 501

Another improvement

Add semi-space for large objects [Caudill & Wirfs-Brock 86]

• big objects slow to copy, so allocate them in separate space

• use mark/sweep in large object space

+ no copying of big objects



Craig Chambers 209 CSE 501

Generational GC

Observation:
most objects die soon after allocation

• e.g. closures, cons cells, stack frames, numbers, ...

Idea:
concentrate GC effort on young objects

• divide up heap into 2 or more generations

• GC each generation with different frequencies, algorithms

Original idea: Peter Deutsch

Generational mark/sweep: [Lieberman & Hewitt 83]

Generational copying GC: [Ungar 84]

Craig Chambers 210 CSE 501

Generation scavenging

A generational copying GC [Ungar 84]

2 generations: new-space and old-space

• new-space managed as a 3-space copying collector

• old-space managed using mark/sweep

• new-space much smaller than old-space

Apply copy collection (scavenging) to new-space frequently

If object survives many scavenges, then copy it to old-space

• tenuring (a.k.a. promotion)

• need some representation of object’s age

If old-space (nearly) full, do a full GC

Craig Chambers 211 CSE 501

Roots for generational GC

Must include pointers from old-space to new-space as roots
when scavenging new-space

How to find these?

Option 1: scan old-space at each scavenge

Option 2: track pointers from old-space to new-space

Craig Chambers 212 CSE 501

Tracking old→new pointers

How to remember pointers?

• individual words containing pointers [Hosking & Moss 92]

• remembered set of objects possibly containing pointers
[Ungar 84]

• card marking [Wilson 89]

How to update table?

• functional languages: easy!

• imperative languages: need a write barrier
• specialized hardware

• standard page protection hardware

• in software, inserting extra checking code at stores



Craig Chambers 213 CSE 501

Evaluation of generation scavenging

+ scavenges are short: fraction of a second

+ low run-time overhead

• 2-3% in Smalltalk interpreter

• 5-15% in optimized Self code

+ less VM space than pure copying

+ better memory locality than pure mark/sweep

− requires write barrier

− still have infrequent full GC’s

− need space for age fields

• some solutions in later work

Craig Chambers 214 CSE 501

Extensions

Multiple generations

• e.g. Ephemeral GC: 8 generations [Moon 84]

• many generations obviates need for age fields

Feedback-mediated tenuring policy [Ungar & Jackson 88]

Large object space

Craig Chambers 215 CSE 501

Incremental & parallel GC

Avoid long pause times by running collector & mutator in parallel

• physical or simulated parallelism

Main issue: how to synchronize collector & mutator?

• read barrier [Baker 78, Moon 84]

• write barrier [Dijkstra 78; Appel, Ellis & Li 88]

Craig Chambers 216 CSE 501

Regions

Cheaper memory management strategy:

• allocate memory into regions

• free region all at once, when all objects in region are dead

Very low cost

+ compacted ⇒ fast allocation, good locality

+ constant-time deallocation of many objects

Can be used in manual memory management

• create region/rmalloc/free region
in place of malloc/free

− still have dangling pointer concerns

Can be used by an automatic system

• analysis/inference inserts region creations, frees

+ no safety concerns

− accuracy?

Big caveat: cannot deallocate any object until all objects in its
region are dead

• regions not suitable for (all data of) all applications


