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CSE 528
Lecture 11: Recurrent Networks

(Chapter 7)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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What’s on our platter today?

✦ Computation in Recurrent Networks
Linear Recurrent Networks
➧ Stability analysis using eigenvalues

Nonlinear Recurrent Networks
➧ Can amplify inputs
➧ Can select inputs
➧ Can multiply (gain modulation)
➧ Can store short-term memory

Associative Memory (Hopfield net)
➧ Showing Stability via Lyapunov function

Oscillatory networks
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Feedforward versus Recurrent Networks

)MW( vuvv ++−= F
dt
dτ

(For feedforward networks, matrix M = 0)

Output Decay Input     Feedback
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What can a Linear Recurrent Network do?

Analysis based on eigenvectors of recurrent 
weight matrix



5R. Rao, 528: Lecture 11

Amplification in a Linear Recurrent Network
Input Output

(noisy cosine)

Preferred angle of neuron
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Input Integration for Maintaining Eye Position

Input: Bursts of spikes from brain stem oculomotor neurons
Output: Memory of eye position in medial vestibular nucleus
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Nonlinear Recurrent Networks

)(MW IuII F
dt
d ⋅++−=τ

)MW( vuvv ++−= F
dt
dτ

Two types of firing-
rate models

Current Dynamics
(firing rate v = F(I))

Firing-Rate 
Dynamics

Output Decay Input    Feedback
(Convenient to use Wu = h)
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Continuous Nonlinear Recurrent Networks
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Discrete case
(small number of neurons)
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Continuous case (in the limit of large numbers of neurons):

θ = preferred stimulus of the neuron (e.g. orientation of input)
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Example of a Continuous Recurrent Network
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Choose recurrent connections = 
cosine function of relative angle

Choose F = rectification nonlinearity:

(θ - θ’)

+

- -Excitation nearby,
Inhibition further away
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Amplification in a Nonlinear Recurrent Network
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Input Output

9.11 =λ (but stable due to rectification)
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Selective “Attention” in a Nonlinear Recurrent Network

Network performs “winner-takes-all” input selection

Input Output
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Gain Modulation in a Nonlinear Recurrent Network

Inputs Outputs

Changing the level of input by adding g multiplies the output 
If h = s + g (s = stimulus angle on retina, g = gaze angle), then 

network output is gain-modulated similar to parietal cortex neurons

(In this 
example, θ =

neuron’s 
preferred 
angle s)

(Width determined by recurrent matrix M) 
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Gain Modulation in Parietal Cortex Neurons

Gaze 1

Gaze 2

Responses of Area 7a neuron Example of a gain-
modulated tuning curve
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Short-Term Memory Storage in a Nonlinear 
Recurrent Network

Local Input +                      Output
Background     

Turn off input                        Output

Network maintains 
a memory of 
previous activity
when input is 
taken away.

Similar to “short-
term memory” or 
“working 
memory” in 
prefrontal cortex) 

Memory is maintained by recurrent activity
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Associative Memories (Hopfield Networks)

✦ Fully connected, no feedforward inputs
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Idea: Store 
patterns as fixed 

points of this 
network

Question: Will I 
always converge 
to fixed point?

g = sigmoid function
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Enter…Lyapunov Functions

✦ Idea: If dI/dt causes some function L(I) to always decrease or 
remain constant (i.e. dL/dt ≤ 0) and L has a lower bound 
(with dL/dt = 0 only if dI/dt = 0), then dI/dt = 0 eventually

Network converges to a fixed point

✦ L also called “energy” function or “cost” function

I4

I1L(I)

I
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Lyapunov for Hopfield networks

✦ What is a good Lyapunov function L(I) for Hopfield nets?

✦ What constraints are required on the recurrent weights M?

✦ On-board example: L(I)
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Example of Auto-Associative Memory

Partial inputs Converged output vector 
(fixed point)
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Pattern Completion in a Hopfield Network

Local minimum
(“attractor”) of cost 
(or “energy”) function
stores pattern

Network converges
from here

to here
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Pattern Recall in Hopfield Nets

time

Initial states Stable states
(fixed points)
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Non-Symmetric Recurrent Networks

✦ Example: Network of Excitatory (E) and Inhibitory (I) 
Neurons

Connections can’t be symmetric: Why?
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Simple 2 neuron model for representing interacting populations
One excitatory neuron and one inhibitory neuron
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Non-Symmetric Recurrent Networks

✦ Example: Network of Excitatory (E) and Inhibitory (I) 
Neurons

Connections can’t be symmetric: MEI < 0 and MIE > 0 
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Parameter
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Linear Stability Analysis

✦ Matrix of derivatives (the “Jacobian Matrix”):
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Compute the Eigenvalues

✦ Jacobian Matrix:

✦ Its two eigenvalues (obtained by solving det(J – λI) = 0):
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Different dynamics depending on real and imaginary parts of λ
(see pages 410-412 of Appendix in Text)



25R. Rao, 528: Lecture 11

Phase Plane and Eigenvalue Analysis
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Damped Oscillations in the Network 

τI = 30 ms

Stable
Fixed
Point
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Unstable Behavior and Limit Cycle

τI = 50 ms

Limit
cycle
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Oscillatory Activity in Real Networks

Activity in rabbit (or wabbit) 
olfactory bulb during 3 sniffs

Sniff
Sniff
Sniff
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Olfactory Bulb Network
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Analysis of Olfactory Bulb Oscillations
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Output of Model Network for Two Odors
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Next Class: Plasticity and Learning 

✦ Things to do:
Start reading Chapter 8
Homework #3 due by Fri 5pm
Start on mini-project

That’s all folks! 
Have a great 

weekend.


