CSE/NEUBEH:528

Lecture 12: Networks that [.earn
(Chapter 8)
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Gameplan for Today

O Plasticity and Learning
< Unsupervised, Supervised, and Reinforcement learning

0 Unsupervised Learning
< Hebb rule and its variants (Covariance, BCM, Oja rule)
< Principal Component Analysis (PCA)
< Temporally Asymmetric Hebbian learning
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So far, we have been analyzing networks with
fixed sets of synaptic weights W and M

Can these be adapted in response to inputs?
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Plasticity and Learning: Adapting the Connections

0 Question 1: How do we adapt the synaptic weights W and M
to solve useful tasks?

0 Question 2: How does the brain do it?
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Synaptic Plasticity in the Brain
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LTP = Long Term Potentiation
Groded EPSP

LTD = Long Term Depression
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Other Forms of Plasticity in the Brain

Short-term
depression

0 Short-Term Synaptic Plasticity
@ Short-term depression/facilitation i
© Dynamics may change on a long-term  pyramica

basis via LTP/LTD

O Changes to intrinsic excitability of cell

left

@ Density and distribution of various Byramidal

channels (ionic conductances)
< Not well-studied

O Growth and morphological changes in
dendrites
= Not well-studied

O Addition of new neurons?

< Hot topic of research these days...
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The Theory: Classification of Learning Algorithms

0 Unsupervised Learning
< Synapses adapted based solely on inputs
© Network self-organizes in response to statistical patterns in input
< Similar to Probability Density Estimation in statistics

O Supervised Learning
< Synapses adapted based on inputs and desired outputs
< External “teacher” provides desired output for each input
© Goal: Function approximation

0 Reinforcement Learning
@ Synapses adapted based on inputs and (delayed)
reward/punishment
@ Goal: Pick outputs that maximize total expected future reward

< Similar to optimization based on Markov decision processes
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Let’s start with Unsupervised Learning

Consider a single neuron receiving feedforward
inputs from other neurons (e.g. from the retina)
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The Grand-Daddy of Unsupervised Learning

0 Rule hypothesized by Donald Hebb in 1949

0 Hebb’s learning rule:

“If neuron A frequently contributes to the firing of
neuron B, then the synapse from A to B should
be strengthened”

0 Related Mantra: Neurons that fire together wire
together

0 Hebb’s goal: Produce clusters of neurons (“cel/
assemblies”) that fire together in response to a
stimulus
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Formalizing Hebb’s Rule

O Consider a linear neuron: v = WTll = llTW
, dw
[0 Basic Hebb Rule: 7, o —uv (or w —« w+evy)
t

0 What is the average effect of this

rule? dw _ _
TW E - <uv> - QW

O Q is the input correlation matrix: (O = <uuT>
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Variants of Hebb’s Rule

0 Pure Hebb only increases synaptic weights (LTP)
< What about LTD?

0 Covariance rules:

dw

— But: LTD also for no input
r,—=u-0,) ( P

"o dt ( “) and some output)

r d_W =u(v- ev) (But: LTD also for no output

and some input)
0 BCM rule: r aw _ w(v-6,) (Fits biological
dt data better)
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Are these learning rules stable?

On Board Analysis, leading up to Oja’s rule
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What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule...

R. Rao, 528: Lecture 12 13

Hebb Rule implements PCA!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2) Input mean = (2,2)

Uyt
Hebb rule rotates weight vector to align with principal
eigenvector of input correlation/covariance matrix (i.e.

direction of maximum variance)
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Waittaminute...what did Hebb really say?

If neuron A frequently contributes to the firing of
neuron B, then the synapse from A to B should be
strengthened

Causality (order of input/output) is important,
not just correlation
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Evidence for Causal Learning Rules: Spike-Timing
Dependent Synaptic Plasticity (STDP)
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(Note: This is just a simulation I did a while back, not real data!)
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STDP in the Vertebrate Brain
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Temporally Asymmetric Hebb Rule (STDP)
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What does STDP do in a Recurrent Network?

Direction of input sequence
(u,2u,~>...)
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STDP allows prediction in the navigating rat
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Next Class: Unsupervised Learning

0 Things to do:
< Finish Chapter 8 and Start Chapter 10
< Watch for the Last Homework (due next Wednesday)
< Start mini-project
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