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CSE/NEUBEH 528
Lecture 12: Networks that Learn

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html
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Gameplan for Today

✦ Plasticity and Learning
Unsupervised, Supervised, and Reinforcement learning

✦ Unsupervised Learning
Hebb rule and its variants (Covariance, BCM, Oja rule)
Principal Component Analysis (PCA)
Temporally Asymmetric Hebbian learning

(Copyright, Warner Brothers)
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So far, we have been analyzing networks with 
fixed sets of synaptic weights W and M

Can these be adapted in response to inputs?
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Plasticity and Learning: Adapting the Connections

✦ Question 1: How do we adapt the synaptic weights W and M 
to solve useful tasks? 

✦ Question 2: How does the brain do it?
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Synaptic Plasticity in the Brain

LTP = Long Term Potentiation
LTD = Long Term Depression
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Other Forms of Plasticity in the Brain

✦ Short-Term Synaptic Plasticity
Short-term depression/facilitation
Dynamics may change on a long-term 
basis via LTP/LTD

✦ Changes to intrinsic excitability of cell
Density and distribution of various 
channels (ionic conductances)
Not well-studied

✦ Growth and morphological changes in 
dendrites

Not well-studied

✦ Addition of new neurons?
Hot topic of research these days…

Short-term 
depression



7R. Rao, 528: Lecture 12

The Theory: Classification of Learning Algorithms

✦ Unsupervised Learning
Synapses adapted based solely on inputs
Network self-organizes in response to statistical patterns in input
Similar to Probability Density Estimation in statistics

✦ Supervised Learning
Synapses adapted based on inputs and desired outputs
External “teacher” provides desired output for each input
Goal: Function approximation

✦ Reinforcement Learning
Synapses adapted based on inputs and (delayed) 
reward/punishment
Goal: Pick outputs that maximize total expected future reward
Similar to optimization based on Markov decision processes
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Let’s start with Unsupervised Learning

Consider a single neuron receiving feedforward 
inputs from other neurons (e.g. from the retina)
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The Grand-Daddy of Unsupervised Learning

✦ Rule hypothesized by Donald Hebb in 1949

✦ Hebb’s learning rule:

“If neuron A frequently contributes to the firing of 
neuron B, then the synapse from A to B should 

be strengthened”

✦ Related Mantra: Neurons that fire together wire 
together

✦ Hebb’s goal: Produce clusters of neurons (“cell 
assemblies”) that fire together in response to a 
stimulus
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Formalizing Hebb’s Rule

✦ Consider a linear neuron:

✦ Basic Hebb Rule: 

✦ What is the average effect of this 
rule?

✦ Q is the input correlation matrix:
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Variants of Hebb’s Rule

✦ Pure Hebb only increases synaptic weights (LTP)
What about LTD?

✦ Covariance rules:

✦ BCM rule:
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data better)

(But: LTD also for no input 
and some output)

(But: LTD also for no output 
and some input)
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Are these learning rules stable?

On Board Analysis, leading up to Oja’s rule
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What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule…
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Hebb Rule implements PCA!

Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2)        Input mean = (2,2)

Hebb rule rotates weight vector to align with principal 
eigenvector of input correlation/covariance matrix (i.e. 

direction of maximum variance)
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Waittaminute…what did Hebb really say?

If neuron A frequently contributes to the firing of 
neuron B, then the synapse from A to B should be 

strengthened

Causality (order of input/output) is important, 
not just correlation
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Evidence for Causal Learning Rules: Spike-Timing 
Dependent Synaptic Plasticity (STDP)

(Note: This is just a simulation I did a while back, not real data!)

Input before Output Spike Input after Output Spike
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STDP in the Vertebrate Brain

Cortical Slice Tadpole tectum

LTP

LTD

LTP

LTD

(This is real data!)
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Temporally Asymmetric Hebb Rule (STDP)
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What does STDP do in a Recurrent Network?

Direction of input sequence
(u1 u2 …)

Adapt M 
using STDP, 
keep W fixed
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STDP allows prediction in the navigating rat

Tuning curve before and after

Tuning curve shifts, 
generating anticipatory response

Rat’s direction 
of motion

Shift in place field 
location in rat 
hippocampus
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Next Class: Unsupervised Learning

✦ Things to do:
Finish Chapter 8 and Start Chapter 10 
Watch for the Last Homework (due next Wednesday)
Start mini-project

Hebb
rules!


