
1R. Rao, 528: Lecture 12

CSE/NEUBEH 528
Lecture 14: Supervised Learning

(Chapter 8)

Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg
Lecture figures are from Dayan & Abbott’s book
http://people.brandeis.edu/~abbott/book/index.html

2R. Rao, 528: Lecture 12

What’s on the menu today?

✦ Supervised Learning
Why supervised learning?
➧ Classification
➧ Function Approximation

Perceptrons & Learning Rule
Linear Separability: Minsky-Papert deliver the bad news
Multilayer networks to the rescue
Function Approximation
Backpropagating (errors)
Radial Basis Function Networks
Recurrent Networks
Demos

(Copyright, Gary Larson)

3R. Rao, 528: Lecture 12

Why Supervised Learning?

✦ Two Primary Tasks
1. Classification

➧ Inputs u1, u2, … and discrete classes C1, C2, …, Ck
➧ Training examples: (u1, C2), (u2, C7), etc.
➧ Learn the mapping from an arbitrary input to its class
➧ Example: Inputs = images, output classes = face, not a face

2. Function Approximation (regression)
➧ Inputs u1, u2, … and continuous outputs v1, v2, …
➧ Training examples: (input, desired output) pairs
➧ Learn to map an arbitrary input to its corresponding output
➧ Example: Highway driving

Input = road image, output = steering angle

4R. Rao, 528: Lecture 12

Perceptrons

✦ Fancy name for a type of layered feedforward networks

✦ Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer
Single-layer

5R. Rao, 528: Lecture 12

Perceptron uses “Threshold Units”

✦ Artificial neuron:
m binary inputs and 1 output (-1 or 1)
Synaptic weights wij
Threshold µi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and -1 if x < 0

)(ij
j

iji uwv µ−Θ= ∑

6R. Rao, 528: Lecture 12

Perceptrons and Classification

✦ Consider a single-layer perceptron
Weighted sum forms a linear hyperplane
Everything on one side of this hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by a perceptron

✦ Example: AND is linearly separable
a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane

0=−∑ ij
j

ijuw µ

v

u1 u2

µ = 1.5
(1,1)

1

-1

1

-1
u1

u2

7R. Rao, 528: Lecture 12

Perceptron Learning Rule

✦ Given inputs u and desired output vd, adjust w and µ as
follows:
1. Compute error signal e = (vd – v) where v is the current output:

2. Change weights and threshold according to e
⇒ For positive inputs, increase weights if error is positive and

decrease if error is negative
⇒ For positive inputs, decrease threshold if error is positive,

increase if error is negative

)(
)(

vv
vv

d

d

−−→
−+→

εµµ
ε uww

)()(µµ −Θ=−Θ= ∑ uwT
j

j
juwv

BABA with replace means →

8R. Rao, 528: Lecture 12

Linear Inseparability

✦ Single-layer perceptron with threshold units fails if
classification task is not linearly separable

Example: XOR
a XOR b = 1 iff (a = -1, b = 1) or (a = 1, b = -1)
No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

✦ Minsky and Papert’s book
showing such negative results
was very influential – put a
damper on neural networks
research for over a decade!

(1,1)

1

-1

1

-1
u1

u2

9R. Rao, 528: Lecture 12

Solution in 1980s: Multilayer perceptrons

✦ Removes limitations of single-layer networks
Can solve XOR

✦ An example of a two-layer perceptron that computes XOR

✦ Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0
x y

10R. Rao, 528: Lecture 12

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1− ?

Multilayer Perceptron: What does it do?

11R. Rao, 528: Lecture 12

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=-1

=1

2
1

1
1−

Example: Perceptrons as Constraint Satisfaction Networks

12R. Rao, 528: Lecture 12

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=-1

=-1=1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

13R. Rao, 528: Lecture 12
x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1
1−1

2
1− -

2
1− >0

Example: Perceptrons as Constraint Satisfaction Networks

14R. Rao, 528: Lecture 12
x y

out

x

y

1

1

2

1 2

02 <−− yx

0
2
11 >−+ yx

=-1

=-1=1

=1

2
1

1
1− 1−

2

1−

1−1

2
1−

Perceptrons as Constraint Satisfaction Networks

15R. Rao, 528: Lecture 12

Function Approximation

✦ We want networks that can learn a function
Network maps real-valued inputs to real-valued output
Want to generalize to predict outputs for new inputs
Idea: Given input data, minimize errors between
network’s output and desired output by changing weights

Continuous output values Can’t
use binary threshold units anymore

To minimize errors, a differentiable
output function is desirable

16R. Rao, 528: Lecture 12

Sigmoidal Networks

Input nodes ae
ag β−+

=
1

1)(

a

Ψ(a)
1

The most common
activation function:

Sigmoid function:

(non-linear
“squashing” function)

g(a)

)(uwTg

u = (u1 u2 u3)T

w

Output

17R. Rao, 528: Lecture 12

Gradient-Descent Learning (“Hill-Climbing”)

✦ Given training examples (um,dm) (m = 1, …, N), define an
error function (cost function or “energy” function)

✦ Would like to change w so that E(w) is minimized
Gradient Descent: Change w in proportion to –dE/dw

2)(
2
1)(m

m

m vdE −= ∑w)(mTm gv uw=

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

18R. Rao, 528: Lecture 12

“Stochastic” Gradient Descent

✦ What if the inputs only arrive one-by-one?

✦ Stochastic gradient descent approximates sum over all inputs
with an “on-line” running sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as
the “delta rule”
or “LMS rule”

delta = error

19R. Rao, 528: Lecture 12

But wait….

✦ Delta rule tells us how to modify the connections from input
to output (one layer network)

One layer networks are not that interesting (remember XOR?)

✦ What if we have multiple layers?

Delta rule can be used to
adapt these weights

How do we adapt these?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T; Desired = d

20R. Rao, 528: Lecture 12

Let’s Backpropagate (Errors)

✦ Backpropagation = gradient-descent learning for multilayer
feedforward networks

✦ Idea: Propagate credit/blame for errors back to internal nodes
Use delta rule to change weights for output layer
Use chain rule (from calculus) to change weights for internal
“hidden” nodes

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T
error = (d – v)

Delta rule

Backprop rule

Backpropagate
this to correct all

weights

21R. Rao, 528: Lecture 12

Notation for Backprop

))((m
k

k
jk

j
ij

m
i uwgWgv ∑∑=

2

,

2

)(
2
1

||||
2
1),(

m
i

im

m
i

m

m

m

vd

E

−=

−=

∑

∑ vdwWm
ku

m
jx

m
jx

Find W and w that minimize
total squared output error:

22R. Rao, 528: Lecture 12

Backpropagation (for Math lovers’ eyes only!)

✦ Learning rule for hidden-output connection weights:

✦ Learning rule for input-hidden connection weights:

m
j

j

m
jij

m
i

m
i

mij

ij
ijij

xxWgvd
dW
dE

W
EWW

)()(∑∑ ′−−=

∂
∂−→ ε

m
k

m
k

k
jkij

j

m
jij

m
i

m
i

imjk

jk

m
j

m
jjkjk

jkjk

uuwgWxWgvd
dw
dE

w
x

x
E

w
E

w
Eww

)()()(

 :But

,
∑∑∑ ′⋅′−−=

∂
∂

⋅
∂
∂=

∂
∂

∂
∂−→ ε {chain rule}

23R. Rao, 528: Lecture 12

Alternate Method: Radial Basis Function
Networks

input nodes

output neurons

one layer of
hidden neurons

24R. Rao, 528: Lecture 12

Radial Basis Function Networks

“activation” function:

∑
=

−=
n

i
jiij xa

1

2
,)(µ

input nodes

output neurons

25R. Rao, 528: Lecture 12

Radial Basis Function Networks

2

2

2)(σ
a

eah
−

=

output function:
(Gaussian bell-shaped function)

a

Ψ(a)

input nodes

output neurons

h(a)

26R. Rao, 528: Lecture 12

Radial Basis Function Networks

output of network:

∑=
i

ijij hw ,out

input nodes

output neurons

• Main Idea: Use a mixture of Gaussians
to approximate the output

• Gaussians are called “basis functions”

27R. Rao, 528: Lecture 12

RBF networks

✦ Radial basis functions
Hidden units store means and
variances
Hidden units compute a
Gaussian function of inputs
x1,…xn that constitute the
input vector x

✦ Learn weights wi, means µi,
and variances σi by
minimizing squared error
function (gradient descent
learning)

y

28R. Rao, 528: Lecture 12

RBF Networks and Multilayer Perceptrons

RBF: MLP:

input nodes

output neurons

29R. Rao, 528: Lecture 12

Recurrent Supervised Networks

✦ Why use recurrent networks?
To keep track of recent history and context
Can learn temporal patterns (time series or oscillations)

✦ Examples
Hopfield network (see previous lecture and textbook)
Recurrent backpropagation networks: for small
sequences, unfold network in time dimension and use
backpropagation learning
Partially recurrent networks E.g. Elman net

30R. Rao, 528: Lecture 12

Partially Recurrent Networks

✦ Example
Elman net
➧ Partially recurrent
➧ Context units keep

internal memory of
past inputs

➧ Fixed context weights
➧ Backpropagation for

learning
➧ E.g. Can disambiguate

A B C and
C B A

Elman network

31R. Rao, 528: Lecture 12

Demos (by Keith Grochow, CSE 599, 2001)

✦ Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

✦ NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole

32R. Rao, 528: Lecture 12

Next Class: Reinforcement Learning

✦ Things to do:
Read Chapter 9
Finish Last Homework (due this Friday, 5pm)
Work on mini-project

I’ll be bäck
(for reinf. learning)

