

Today's Agenda

- ♦ Reinforcement Learning
 - ⇒ What is reinforcement learning?
 - Classical conditioning
 - ▶ Learning to salivate (predicting reward)
 - ⇒ Predicting Delayed Rewards
 - ▶ Temporal Difference Learning
 - ⇒ Learning to Act
 - **♦** Q-learning
 - ♦ Actor-Critic Architecture

The Reinforcement Learning Framework

- ◆ Unsupervised learning → Learn the hidden causes of inputs
- ◆ Supervised learning → Learn a function based on training examples of (input, desired output) pairs
- ◆ Reinforcement Learning → Learn the best actions to take at any given state so as to maximize total (future) reward

 - ❖ Intermediate between unsupervised and supervised learning
 - Instead of explicit teaching signal (or desired output), you get rewards or punishments
 - ⇒ Inspired by <u>classical conditioning</u> experiments (remember Pavlov's hyper-salivating dog?)

R. Rao, 528: Lecture 15

3

The Reinforcement Learning "Agent" Not that maze task again! Reward rt Environment R. Rao, 528: Lecture 15

Early Results: Pavlov and his Dog

- Classical (Pavlovian) conditioning experiments
- ◆ <u>Training</u>: Bell → Food
- ◆ After: Bell → Salivate
- Conditioned stimulus (bell) predicts future reward (food)

R. Rao, 528: Lecture 15

5

Predicting Reward

- \diamond Stimulus u = 0 or 1
- \Rightarrow Expected reward v = wu
- ightharpoonup Delivered reward = r
- Learn w by minimizing $(r-v)^2$

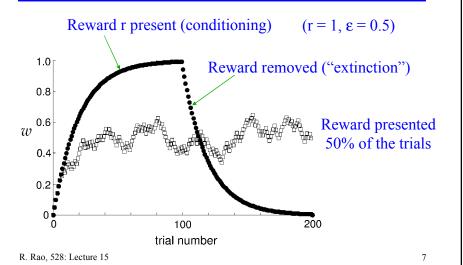
$$w \to w + \varepsilon (r - v)u$$

(same as the delta rule; also called Rescorla-Wagner rule)

- Prediction error $\delta = (r v)$
- For small ε and u = 1, $w \to w + \varepsilon(r w)$
 - \Rightarrow Average value of $w = \langle w \rangle \approx \langle r \rangle$

R. Rao, 528: Lecture 15

Predicting Reward during Conditioning



Predicting Delayed Rewards

- ❖ In more realistic cases, reward is typically delivered at the end (when you know whether you succeeded or not)
- **♦** Time: $0 \le t \le T$ with stimulus u(t) and reward r(t) at each time step t
- ♦ Key Idea: Make the output v(t) predict total expected future reward starting from time t

$$v(t) \approx \left\langle \sum_{\tau=0}^{T-t} r(t+\tau) \right\rangle$$

Learning to Predict Delayed Rewards

• Use a set of modifiable weights w(t) and predict based on all past stimuli u(t):

$$v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$$

• Would like to find $w(\tau)$ that minimize:

$$\left(\sum_{\tau=0}^{T-t} r(t+\tau) - v(t)\right)^2$$

(Can we minimize this using gradient descent and delta rule?)

R. Rao, 528: Lecture 15

(

Learning to Predict Delayed Rewards

• Use a set of modifiable weights w(t) and predict based on all past stimuli u(t):

$$v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$$

• Would like to find $w(\tau)$ that minimize:

$$\left(\sum_{\tau=0}^{T-t} r(t+\tau) - v(t)\right)^2$$

(Can we minimize this using gradient descent and delta rule?)

Yes, BUT...not yet available are future rewards

Temporal Difference (TD) Learning

Key Idea: Rewrite squared error to get rid of future terms:

$$\left(\sum_{\tau=0}^{T-t} r(t+\tau) - v(t)\right)^{2} = \left(r(t) + \sum_{\tau=0}^{T-t-1} r(t+1+\tau) - v(t)\right)^{2}$$

$$\approx \left(r(t) + v(t+1) - v(t)\right)^{2}$$

***** Temporal Difference (TD) Learning:

For each time step t, do: $v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$ For all $\tau(0 \le \tau \le t)$, do:

 $w(\tau) \to w(\tau) + \varepsilon \left[\underbrace{r(t) + v(t+1)}_{} - v(t) \right] u(t-\tau)$

Expected future reward Prediction

before

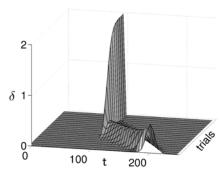
R. Rao, 528: Lecture 15

11

after

Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

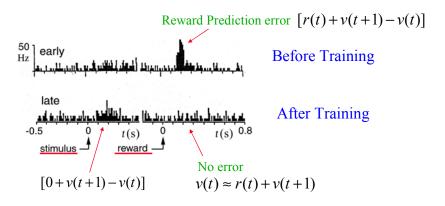


Prediction error δ for each time step (over many trials)

R. Rao, 528: Lecture 15

Reward Prediction Error Signal in Monkeys?

Dopaminergic cells in Ventral Tegmental Area

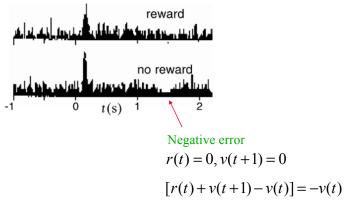


R. Rao, 528: Lecture 15

13

More Evidence for Prediction Error Signals

Dopaminergic cells in Ventral Tegmental Area



R. Rao, 528: Lecture 15

R. Rao, 528: Lecture 15

15

Using Reward Predictions to Select Actions

- ♦ Suppose you have computed "Values" for various actions
- Q(a) = value (predicted reward) for executing action a
 ⇒ Higher if action yields more reward, lower otherwise
- Can select actions probabilistically according to their value:

$$P(a) = \frac{\exp(\beta Q(a))}{\sum_{a'} \exp(\beta Q(a'))}$$
 (High β selects actions with highest Q value. Low β selects more uniformly)

Simple Example: Bee Foraging

- Experiment: Bees select either yellow (y) or blue (b) flowers based on nectar reward
- ◆ <u>Idea</u>: Value of yellow/blue = average reward obtained so far

$$Q(y) \to Q(y) + \varepsilon(r_y - Q(y))$$

$$Q(b) \to Q(b) + \varepsilon(r_b - Q(b))$$
 delta rule

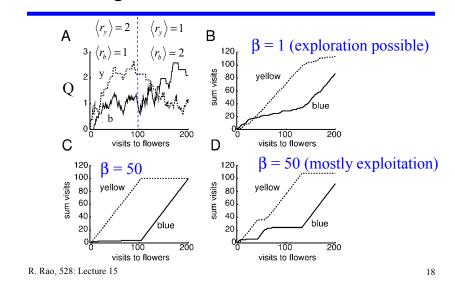
$$P(y) = \frac{\exp(\beta Q(y))}{\exp(\beta Q(y)) + \exp(\beta Q(b))}$$

$$P(b) = 1 - P(y)$$

R. Rao, 528: Lecture 15

17

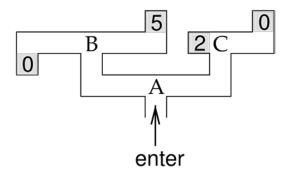
Simulating Bees



R. Rao, 528: Lecture 15

19

Selecting Actions when Reward is Delayed



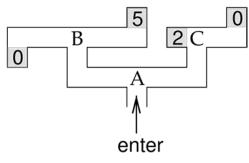
States: A, B, or C

Possible actions at any state: Left (L) or Right (R)

If you randomly choose to go L or R (random "policy"), what is the *value v of each state*?

R. Rao, 528: Lecture 15

Policy Evaluation



For random policy:

$$v(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5 = 2.5$$

$$v(C) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$$

$$v(A) = \frac{1}{2} \cdot v(B) + \frac{1}{2} \cdot v(C) = 1.75$$

(Location, action) \rightarrow new location $(u,a) \rightarrow u'$

v(u) = w(u)

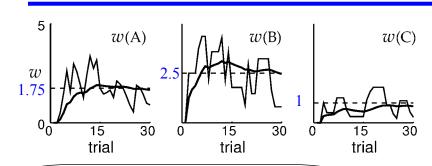
Can learn this using TD learning:

$$w(u) \rightarrow w(u) + \varepsilon [r_a(u) + v(u') - v(u)]$$

R. Rao, 528: Lecture 15

21

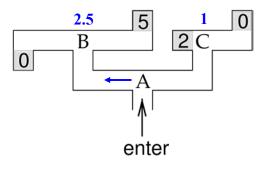
Maze Value Learning for Random Policy



Once I know the values, I can pick the action that leads to the higher valued state!

R. Rao, 528: Lecture 15

Selecting Actions based on Values



Values act as
surrogate immediate
rewards → Locally
optimal choice leads
to globally optimal
policy (for Markov
environments)
Related to Dynamic
Programming in CS
(see appendix in text)

R. Rao, 528: Lecture 15

23

Q learning

- A simple method for action selection based on action values (or Q values) Q(x,a) where x is a state and a is an action
- 1. Let u be the current state. Select an action a according to:

$$P(a) = \frac{\exp(\beta Q(u, a))}{\sum_{a'} \exp(\beta Q(u, a'))}$$

- 2. Execute a and record new state u' and reward r. Update Q: $Q(u,a) \to Q(u,a) + \varepsilon(r + \max_{a'} Q(u',a') Q(u,a))$
- 3. Repeat until an end state is reached

Actor-Critic Learning

- Two separate components: Actor (maintains policy) and Critic (maintains value of each state)
- 1. Critic Learning ("Policy Evaluation"): Value of state u = v(u) = w(u) $w(u) \rightarrow w(u) + \varepsilon [r_a(u) + v(u') - v(u)]$ (same as TD rule)
- 2. Actor Learning ("Policy Improvement"):

$$P(a;u) = \frac{\exp(\beta Q_a(u))}{\sum_{b} \exp(\beta Q_b(u))}$$
 Use this to select an action a in u

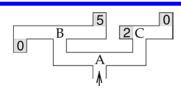
$$Q_{a'}(u) \rightarrow Q_{a'}(u) + \varepsilon [r_a(u) + v(u') - v(u)] (\delta_{aa'} - P[a'; u])$$

Interleave 1 and 2

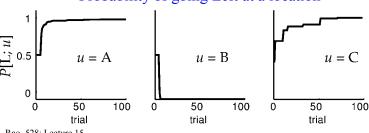
R. Rao, 528: Lecture 15

25

Actor-Critic Learning in the Maze Task



Probability of going Left at a location



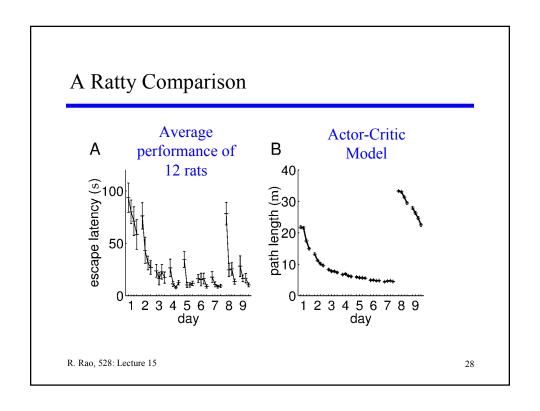
R. Rao, 528: Lecture 15

Learning to Solve the Water Maze Task place cells Rat needs to Place cell swim to platform tuning curve actor Current state input (location) from place cells in hippocampus trial 7 Value function trial 22 trial 2 ♦ Rat learns to find 0.5 0.5 direct path to 0

platform

R. Rao, 528: Lecture 15

Highest probability actions at each location



Demo of Reinforcement Learning in a Robot (from http://www.fe.dis.titech.ac.jp/~gen/index.html)

Things to do: Read Chapter 9 Work on mini-project

