A Neural Mechanism for Decision Making K C Y W D K D O P E D B A I Q S D F M K C N F A E O I E N C V N S E N C H P D N C O E N A S H Q E N D N C K R N D N Q I O M Z C P Q

What is a decision?

- A commitment to a proposition or selection of an action
- Based on
 - evidence
 - prior knowledge
 - payoff

Why study decisions?

- They are a model of higher brain function
- They are experimentally tractable
 - Combined behavior and physiology in rhesus monkeys

Reward for correct choice

Information is coded by spikes

Sensory "Evidence"

Spatially-selective, eye movement-related, persistent activity in area LIP

LIP activity during direction discrimination task

LIP activity during direction discrimination task

LIP activity during direction discrimination task

Average LIP activity in RT motion task

Roitman & Shadlen, 2002 J. Neurosci.

A Neural Integrator for Decisions?

Diffusion to bound model

Diffusion to bound model

Proposed by Wald, 1947 and Turing (WW II, classified); Stone, 1960; then Laming, Link, Ratcliff, Smith, . . .

Diffusion to bound model

Shadlen & Gold (2004) Palmer et al (in press)

Best fitting chronometric function "Diffusion to bound"

• LIP represents $\int dt$ of momentary motion evidence

(

(

- Momentary evidence is a spike rate difference from area MT
- The accumulated evidence used by the monkey is in area LIP

The accumulated evidence used by the monkey is in area LIP

- LIP represents $\int dt$ of momentary motion evidence
- Momentary evidence is a spike rate difference from area MT
- The accumulated evidence used by the monkey is in area LIP
- How and where is the integral computed?
- How is the bound set?
- How is a bound crossing detected?

Probabilistic categorization task: 4-card stud

Tianming Yang

Leaky integration ⇒ confusion

Turing's strategy: sequential analysis well ypathesis: Messages encrypted in favor of common your estimation a devices in same state KCYWDKDOPEDBAIQSDFMKCNFAEOIENCVNSDFN

E N C H P D N C O E N A S H Q E N D N C K R N D N Q I O M Z F J K C P Q

Turing's strategy: sequential analysis well ypathesis: Messages encrypted in favor of common your estimation a devices in same state KCYWDKDOPEDBAIQSDFMKCNFAEOIENCVNSDFN

E N C H P D N C O E N A S H Q E N D N C K R N D N Q I O M Z F J K C P Q

Turing's strategy: sequential analysis $=+3.0 \ db$ match $10\log_{10}$ Weight of evidence in favor of $\sqrt{13}$ $10 \log_{10}$ =-0.17 dbcommon rotor setting non - match Κ D \mathbf{O} P R Δ E E N D Ρ D С Ο E S n Ν С R Ν D ()м Ρ 0

Weight of evidence in favor of common settings (decibans)

Variable response to weak RIGHTWARD motion

Difference in *spike rate* is proportional to the *logarithm of the likelihood ratio*

Random walk to bounds at $\pm A$

$$Y_n = \sum_{i=1}^n X_i \text{ random walk or diffusion}$$
$$M_X(\theta) \equiv E\left[e^{\theta X}\right] = \int_{-\infty}^{\infty} f(x)e^{\theta x}dx \quad \text{def. of MGF for } X$$
$$M_{Y_n}(\theta) = M_X^n(\theta) \quad \text{MGF for sums}$$

$Y \equiv$ stopped accumulation $M_{\tilde{Y}}(\theta) = P_{+}e^{\theta A} + (1 - P_{+})e^{-\theta A}$ MFG for \tilde{Y}

Stochastic processes: partial sums and Wald's martingale

Stochastic processes: partial sums and Wald's martingale

Wald's martingale & identity

$$E[Z_{n+1}|Y_1, Y_2, ..., Y_n] = E[M_X^{-(n+1)}(\theta)e^{\theta Y_{n+1}}|Y_1, Y_2, ..., Y_n]$$

$$= E[M_X^{-(n+1)}(\theta)e^{\theta (Y_n + X_{n+1})}]$$

$$= E[M_X^{-1}(\theta)M_X^{-n}(\theta)e^{\theta Y_n}e^{\theta X_{n+1}}]$$

$$= E[Z_n M_X^{-1}(\theta)e^{\theta X_{n+1}}]$$

$$= M_X^{-1}(\theta)Z_n E[e^{\theta X_{n+1}}]$$

$$= Z_n$$

$$E[Z_n] = E[M_x^{-n}(\theta)e^{\theta Y_n}]$$
$$= M_x^{-n}(\theta)E[e^{\theta Y_n}]$$
$$= M_x^{-n}(\theta)M_{Y_n}(\theta)$$
$$= 1$$

Use Wald's martingale to simplify $M_{\tilde{Y}}(\theta)$ $E[\tilde{Z}] = E[Z_n] = 1$

 $E\left[M_{X}^{-n}(\theta)e^{\theta\tilde{Y}}\right]=1$

If there were a value for θ such that $M_X(\theta) = 1$, it no longer matters that *n* is a random number. At this special value, θ_1 , $E\left[e^{\theta_1 \tilde{Y}}\right] = 1$

E.g., for the Normal distribution, with mean μ and variance σ^2 , $\theta_1 = -\frac{2\mu}{\sigma^2}$

$$M_{\tilde{Y}}(\theta_1) = P_+ e^{\theta_1 A} + (1 - P_+) e^{-\theta_1 A} = 1$$

$$P_{+} = \frac{1}{1 + e^{\theta_1 A}}$$