A Neural Mechanism for Decision Making
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What 1s a decision?

A commitment to a proposition or selection
of an action

e Based on
— evidence

— prior knowledge
— payoff



Why study decisions?

 They are a model of higher brain function

 They are experimentally tractable

— Combined behavior and physiology in rhesus
monkeys
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Direction-Discrimination Task
Reaction-time version

Reward for correct choice
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Psychometric function: Accuracy
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Chronometric function: Speed
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Information 1s coded by spikes







Sensory “Evidence”
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Albright et al., 1984 J. Neurophysiol.
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Spatially-selective, eye movement-related,
persistent activity in area LIP
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LIP activity during direction
discrimination task
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discrimination task




LIP activity during direction
discrimination task




Average LIP activity in RT motion task
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A Neural Integrator for Decisions?

MT: Sensory Evidence

Motion energy

“Step,,
. High motion strength
Spikes/s
Low motion strength
T Time T
Stimulus Stimulus

on ~1 sec off

LIP: Decision Formation

Accumulation of evidence

Géramp”
Spikes/s
T Time T
Stimulus ’ Stimulus
on ~1sec off



Diffusion to bound model
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Diffusion to bound model

Positive bound or Criterion to answer “1”
+B

Position of particle Tims

or
Evidence in favor

of proposition 1 and

against propostion 2

4 Probability density\

-+

Momentary displacement \
or

change in evidence ()

. - J

Negative bound or Criterion to answer “2”

Proposed by Wald, 1947 and Turing (WW 11, classified);
Stone, 1960; then Laming, Link, Ratcliff, Smith, . . .



Diffusion to bound model

+B 7

Accumulated evidence
for Rightward
and
against Leftward

0 -

Criterion to answer “Right”

Time

p

+

Momentary evidence

c.g, 0
ASpike rate: /
k MTRight_ MTLeft B ;LL — k ? Y

Probability density\

Criterion to answer “Left”

C is motion strength (coherence)

Shadlen & Gold (2004)
Palmer et al (in press)



Best fitting chronometric function

“Diffusion to bound”
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Predicted psychometric function
“Diftusion to bound”
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Criterion to answer “Right”
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Accumulated evidence

Criterion to answer “Right”
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and
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Criterion to answer “Left”

LIP represents f dt of momentary motion evidence
Momentary evidence is a spike rate difference from area MT

The accumulated evidence used by the monkey is in area LIP



The momentary evidence 1s a A between
opposite direction signals in area MT
Bounci for RIGHT choice

A1 Stimulate RIGHTWARD
- S MT neurons
+
Decision i Momentary m
variable SENsory: o e &0
evidence <\ ,
. i J
B+ m

Bound for LEFT choice

The accumulated evidence used by the monkey 1s in area LIP
Bound for RIGHT choice
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Criterion to answer “Right”
+B 7

Time

Accumulated evidence
for Rightward
and
against Leftward

4 Probability density
+

Momentary evidence \
e.g., 0
ASpike rate: /
MT MT U= kC
J

Right Left

\ —

0 -

Criterion to answer “Left”

* LIP represents f dt of momentary motion evidence
* Momentary evidence is a spike rate difference from area MT
 The accumulated evidence used by the monkey is in area LIP

 How and where 1s the integral computed?
e How 1s the bound set?

e How 1s a bound crossing detected?



Probabilistic categorization task:
4-card stud

Delay & Sacade
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Tianming Yang
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Weight of evidence 1n favor of red
(log,, likelihood ratio)

Favoring
Green

Favoring
Red




From sensorimotor integration to
cognition and 1ts disorders

Sensory
evidence




From sensorimotor integration to
cognition and 1ts disorders

Sensory Motor
. >
evidence response

Y




From sensorimotor integration to
cognition and 1ts disorders

Oculomotor
System

Area MT




From sensorimotor integration to
cognition and 1ts disorders

Sensory " Motor
evidence response

J dt
Evanescent > Plans for
sensory stream the future

Leaky integration = confusion



Turing’s strategy: sequential analysis

wldypathesis: Messages encrypred

i favo =

combiynlotignia devices in same state

KCYWDKDOPEDBAIOQSDFMEKCNTFAEOIENCVNSDTFN
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Weight of evidence in favor

Turing’s strategy: sequential analysis

101 137 =+3.0db atch
Weight of evidence o8 0|:(-2L6):| "
in favor of =1

common rotor setting 10 log, o[ﬁ} =—0.17db non - match

\
KCYWDKDOPEDBAIOQSDFMEKCNTFAEOIENCVNSDTFN

ENCHPDNCOENASHOQOQENDNCEKRNDNOQQIOMZEFJZKCPDOQ
V7744

of common settings (decibans)



Variable response to weak RIGHTWARD motion

LEFT preferring
MT neurons
0.07 1 RIGHT preferring
MT neurons
0.06-
Frequency of
1 Y 0.051

occurrence
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0.03-
0.02 1

0.01 -

0 10 20 30 40 50
Response (spikes/s)



Difference 1n spike rate 1s proportional
to the logarithm of the likelihood ratio

/ Distribution of

0.06 - response
DIFFERENCES,

0.05 1 right-left, for

rightward motion

Frequency of 0.04-
occurrence
0.03

0.02 1

0.01 1

0 .
-40 -20 0 20 40

Response difference (spikes/s)




Accumulated
difference (R-L)

Log of
Likelihood
Ratio

Weight of
evidence

Decibans

Belief

Amount of accumulated

evidence required to
choose “RIGHT”

0.2
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Time (s)

0.8

Amount of accumulated

evidence required to
choose “LEFT”




Random walk to bounds at A

Y = EX . random walk or diffusion

i=1

M,(0)=E[e j f(x)e”dx  def. of MGF for X

M, (0) = M, (0) MGEF for sums

~J

Y = stopped accumulation

0A A >
M,0)=Pe +(1-P)e MEFG for Y



Stochastic processes: partial sums and
Wald’s martingale

Accumulation

Y,=0
Y,




Stochastic processes: partial sums and
Wald’s martingale

Accumulation Wald’s Martingale

Y, =0 Z,=1
6X,
+X, x <
M (0)
Y, Z,
60X,
+X, x <
M ()

Y, Z,




Wald’s martingale & identity

n+1

E|zZ

Y,.Y,....Y, |= E| M" (@)
_ : M (0) ee(Yn+Xn+1>]
= E[M (O)M " (6)e"" e ]
= E[Z,M ()" ]
= M, (0)Z,E| " |
— Zn

Y,.Y,.....Y, |

E(Z,]=E| M "(0)™

=M "(O)E| ™
— M;n (H)Myn (9)
=1



Use Wald’s martingale
to simplity M (6)

E|Z]|=E[z,]=1

E| M7 (6)e” ] =1

If there were a value for 6 such that M, (0)=1, it no longer matters
that n 1s a random number. At this special value, 0, ,

E[eelq =1

2u
62

E.g., for the Normal distribution, with mean u and variance c’, 0, =—
M,(6,)=Pe"" +(1-P)e " =1

P — 1
o1+




