A Neural Mechanism for Decision Making

K C Y W D K D O P E D B A I Q S D F M K C N F A E O I E N C V N S
E NCHPDNCOENASHQENDNCKRNDNQIOMZCPQ

What is a decision?

- A commitment to a proposition or selection of an action
- Based on
- evidence
- prior knowledge
- payoff

Why study decisions?

- They are a model of higher brain function
- They are experimentally tractable
- Combined behavior and physiology in rhesus monkeys

Direction-Discrimination Task Reaction-time version

Direction-Discrimination Task Reaction-time version

Direction-Discrimination Task Reaction-time version

Direction-Discrimination Task Reaction-time version

Direction-Discrimination Task Reaction-time version

Reward for correct choice

Psychometric function: Accuracy

Chronometric function: Speed

Information is coded by spikes

Sensory "Evidence"

Spatially-selective, eye movement-related, persistent activity in area LIP

100 ms

LIP activity during direction discrimination task

LIP activity during direction discrimination task

LIP activity during direction discrimination task

Average LIP activity in RT motion task

Roitman \& Shadlen, 2002 J. Neurosci.

A Neural Integrator for Decisions?

MT: Sensory Evidence
Motion energy
"step"

LIP: Decision Formation
Accumulation of evidence
"ramp"

Diffusion to bound model

Diffusion to bound model

Proposed by Wald, 1947 and Turing (WW II, classified);
Stone, 1960; then Laming, Link, Ratcliff, Smith, . . .

Diffusion to bound model

Best fitting chronometric function

 "Diffusion to bound"

Predicted psychometric function "Diffusion to bound"

- LIP represents $\int d t$ of momentary motion evidence
- Momentary evidence is a spike rate difference from area MT
- The accumulated evidence used by the monkey is in area LIP

The momentary evidence is a Δ between opposite direction signals in area MT

Stimulate RIGHTWARD

The accumulated evidence used by the monkey is in area LIP

Stimulate RIGHT CHOICE

- LIP represents $\int d t$ of momentary motion evidence
- Momentary evidence is a spike rate difference from area MT
- The accumulated evidence used by the monkey is in area LIP
- How and where is the integral computed?
- How is the bound set?
- How is a bound crossing detected?

Probabilistic categorization task:

 4-card stud

Tianming Yang

Favoring Green

 $-\infty \quad-0.9-0.7-0.5-0.30 .30 .50 .70 .9+\infty$

 Weight of evidence in favor of red ($\log _{10}$ likelihood ratio)Favoring Red

$\square \triangle$ $\triangle \square$

From sensorimotor integration to cognition and its disorders

From sensorimotor integration to cognition and its disorders

From sensorimotor integration to cognition and its disorders

From sensorimotor integration to cognition and its disorders

Leaky integration \Rightarrow confusion

Turing's strategy: sequential analysis

 wothupathesis: Messages encryapled combay mod $k u i g m$ a devices in same state

Turing's strategy: sequential analysis

 wothupathesis: Messages encryapled combay mod $k u i g m$ a devices in same state

Turing's strategy: sequential analysis

Weight of evidence in favor
of common settings (decibans)
K C Y W D K D O P E D B A I Q S D F M K C N FAE O I ENCVNS D F N
ENCHPDNCOENASHQENDNCKRNDNQIOMZFJKCPQ

Variable response to weak RIGHTWARD motion

Difference in spike rate is proportional to the logarithm of the likelihood ratio

Random walk to bounds at $\pm \mathrm{A}$

$Y_{n}=\sum_{i=1}^{n} X_{i}$ random walk or diffusion
$M_{X}(\theta) \equiv E\left[e^{\theta X}\right]=\int_{-\infty}^{\infty} f(x) e^{\theta x} d x \quad$ def. of MGF for X
$M_{Y_{n}}(\theta)=M_{X}^{n}(\theta) \quad$ MGF for sums
$\tilde{Y} \equiv$ stopped accumulation
$M_{\tilde{Y}}(\theta)=P_{+} e^{\theta A}+\left(1-P_{+}\right) e^{-\theta A} \quad$ MFG for \tilde{Y}

Stochastic processes: partial sums and Wald's martingale

Stochastic processes: partial sums and Wald's martingale

Wald's martingale \& identity

$$
\begin{aligned}
E\left[Z_{n+1} \mid Y_{1}, Y_{2}, \ldots, Y_{n}\right] & =E\left[M_{X}^{-(n+1)}(\theta) e^{\theta Y_{n+1}} \mid Y_{1}, Y_{2}, \ldots, Y_{n}\right] \\
& =E\left[M_{X}^{-(n+1)}(\theta) e^{\theta\left(Y_{n}+X_{n+1}\right)}\right] \\
& =E\left[M_{X}^{-1}(\theta) M_{X}^{-n}(\theta) e^{\theta Y_{n}} e^{\theta X_{n+1}}\right] \\
& =E\left[Z_{n} M_{X}^{-1}(\theta) e^{\theta X_{n+1}}\right] \\
& =M_{X}^{-1}(\theta) Z_{n} E\left[e^{\theta X_{n+1}}\right] \\
& =Z_{n} \\
E\left[Z_{n}\right] & =E\left[M_{x}^{-n}(\theta) e^{\theta Y_{n}}\right] \\
& =M_{x}^{-n}(\theta) E\left[e^{\theta Y_{n}}\right] \\
& =M_{x}^{-n}(\theta) M_{Y_{n}}(\theta) \\
& =1
\end{aligned}
$$

Use Wald's martingale to simplify $M_{\tilde{Y}}(\theta)$

$E[\tilde{Z}]=E\left[Z_{n}\right]=1$
$E\left[M_{x}^{-n}(\theta) e^{\theta \tilde{Y}}\right]=1$
If there were a value for θ such that $M_{X}(\theta)=1$, it no longer matters that n is a random number. At this special value, θ_{1},
$E\left[e^{\theta_{1} \tilde{Y}}\right]=1$
E.g., for the Normal distribution, with mean μ and variance $\sigma^{2}, \theta_{1}=-\frac{2 \mu}{\sigma^{2}}$

$$
\begin{aligned}
& M_{\tilde{Y}}\left(\theta_{1}\right)=P_{+} e^{\theta_{1} A}+\left(1-P_{+}\right) e^{-\theta_{1} A}=1 \\
& P_{+}=\frac{1}{1+e^{\theta_{1} A}}
\end{aligned}
$$

