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Abstract

This paper presents a method for extracting distinctive invariant features from
images, which can be used to perform reliable matching between different im-
ages of an object or scene. The features are invariant to image scale and ro-
tation, and are shown to provide robust matching across a a substantial range
of affine distortion, addition of noise, change in 3D viewpoint, and change in
illumination. The features are highly distinctive, in the sense that a single fea-
ture can be correctly matched with high probability against a large database of
features from many images. This paper also describes an approach to using
these features for object recognition. The recognition proceeds by matching
individual features to a database of features from known objects using a fast
nearest-neighbor algorithm, followed by a Hough transform to identify clusters
belonging to a single object, and finally performing verification through least-
squares solution for consistent pose parameters. This approach to recognition
can robustly identify objects among clutter and occlusion while achieving near
real-time performance.
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1 Introduction

Image matching is a fundamental aspect of many problems in computer vision, including
object recognition, solving for 3D structure from multiple images, stereo matching, and
motion tracking and segmentation. This paper describes image features that have many
properties that make them suitable for matching differing images of an object or scene.
The features are invariant to image scaling and rotation, and partially invariant to change
in illumination and 3D camera viewpoint. They are well localized in both the spatial and
frequency domains, reducing the probability of disruption by occlusion, clutter, or noise.
Large numbers of features can be extracted from typical images with efficient algorithms.
Most importantly, the features are highly distinctive, which allows a single feature to be
correctly matched with high probability against a large database of features, providing a
basis for object and scene recognition.

The cost of extracting these features is minimized by taking a sequential filtering ap-
proach, in which the more expensive operations are applied only at locations that pass an
initial test. Following are the major stages of computation in generating the set of image
features:

1. Scale-space peak selection: The first stage of computation must search over all
scales and image locations, but remains efficient by using a difference-of-Gaussian
function to identify likely feature locations in an orientation-independent manner.

2. Keypoint localization: At each candidate location, a detailed model is fit to deter-
mine location, scale and edge response. Keypoints are selected based on measures of
their stability.

3. Orientation assignment: One or more orientations are assigned to each keypoint
location based on local image properties. All future operations are performed relative
to the assigned orientation, scale, and location for each feature, providing invariance
to these transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale
in the region around each keypoint, and represented in a manner that allows for local
shape distortion and change in illumination.

An important aspect of this approach is that it generates large numbers of features that
densely cover the image over the full range of scales and locations. A typical image of size
500x500 pixels will give rise to about 2000 stable features (although this number depends
on both image content and choices for various parameters). The quantity of features is
particularly important for object recognition, where the ability to detect small objects in
cluttered backgrounds requires that at least 3 to 6 features be correctly matched from each
object for reliable identification.

For image matching and recognition, features are first extracted from a set of refer-
ence images and stored in a database. A new image is matched by individually comparing
each feature from the new image to this previous database and finding candidate match-
ing features based on Euclidean distance of their feature vectors. This paper will discuss
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fast nearest-neighbor algorithms that can perform this computation rapidly against large
databases.

The keypoint descriptors are highly distinctive, which allows a single feature to find its
correct match with good probability in a large database of features. However, in a cluttered
image, many features will not have any correct match in the database, giving rise to many
false matches in addition to the correct ones. The correct matches can be filtered from
the full set of matches by identifying subsets of keypoints that agree on the object and its
location, scale, and orientation in the new image. The probability that several features will
agree on these parameters by chance is much lower than the probability that any individual
feature match will be in error. The determination of these consistent clusters can be done
rapidly by using an efficient hash table implementation of the generalized Hough transform.

Each cluster of 3 or more features that agree on an object and its pose is then subject to
further detailed verification. First, a least-squared estimate is made for an affine approxi-
mation to the object pose. Any other image features consistent with this pose are identified,
and outliers are discarded. Finally, a detailed computation is made of the probability that a
particular set of features indicates the presence of an object, given the accuracy of fit and
number of probable false matches. Object matches that pass all these tests can be identified
as correct with high confidence.

2 Related research

The development of image matching by using a set of local keypoints can be traced back
to the work of Moravec (1981) on stereo matching using a corner detector to select interest
points. The Moravec detector was improved by Harris and Stephens (1988) to make it more
repeatable under small image variations and near edges. Harris also showed its value for
efficient motion tracking and 3D structure from motion recovery (Harris, 1992), and the
Harris corner detector has since been widely used for many other image matching tasks.
While these feature detectors are usually called corner detectors, they are not selecting just
corners, but rather any image location that has large gradients in all directions at a particular
scale.

The initial applications to stereo and short-range motion tracking matched very similar
images, but the approach was later extended to more difficult problems. Zhang et al. (1995)
showed that it was possible to match Harris corners over a large image range by using a cor-
relation window around each corner to select likely matches. Outliers were then removed
by solving for a fundamental matrix describing the geometric constraints between the two
views of rigid scene and removing matches that did not agree with the majority solution.
At the same time, a similar approach was developed by Torr (1995) for long-range motion
matching, in which geometric constraints were used to remove outliers for rigid objects
moving within an image.

The ground-breaking work of Schmid and Mohr (1997) showed that invariant local
feature matching could be extended to general image recognition problems in which a
feature was matched against a large database of images. They also used Harris corners
to detect interest points, but rather than matching with a correlation window, they used
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a rotationally invariant descriptor of the local image region. This allowed features to be
matched under arbitrary orientation change between the two images. Furthermore, they
demonstrated that multiple feature matches could accomplish general recognition under
occlusion and clutter by identifying consistent clusters of matched features.

The Harris corner detector is very sensitive to changes in image scale, so it does not
provide a good basis for matching images of different sizes. Earlier work by the author
(Lowe, 1999) extended the local feature approach to achieve scale invariance. This work
also described a new local descriptor that provided more distinctive features while being
less sensitive to local image distortions such as 3D viewpoint change. This current paper
provides a more in-depth development and analysis of this earlier work, while also present-
ing a number of improvements in stability and feature invariance.

There is a considerable body of previous research on identifying representations that are
stable under scale change. Some of the first work in this area was by Crowley and Parker
(1984), who developed a representation that identified peaks and ridges in scale space, and
linked these into a tree structure. The tree structure could then be matched between images
with arbitrary scale change. More recent work on graph-based matching by Shokoufandeh,
Marsic and Dickinson (1999) provides more distinctive feature descriptors using wavelet
coefficients. The problem of identifying an appropriate and consistent scale for feature
detection has been studied in depth by Lindeberg (1993, 1994). He describes this as a
problem of scale selection, which assigns a consistent and appropriate scale to each feature,
and we make use of his results on scale selection below.

Recently, there has been an impressive body of work on extending local features to
be invariant to full affine transformations (Baumberg, 2000; Tuytelaars and Van Gool,
2000; Mikolajczyk and Schmid, 2002; Schaffalitzky and Zisserman, 2002; Brown and
Lowe, 2002). This would allow for invariant matching to features on a planar surface under
changes in orthographic 3D projection, in most cases by resampling the image in a local
affine frame. However, none of these approaches are yet fully affine invariant, as they start
with initial feature scales and locations selected in a non-affine-invariant manner. While
the method to be presented in this paper is not fully affine invariant, a different approach
is used in which the local descriptor allows relative feature positions to shift significantly
with only small changes in the descriptor. This approach not only allows the descriptors
to be reliably matched across a considerable range of affine distortion, but it also makes
the features more robust against changes in 3D viewpoint for non-planar surfaces. Other
advantages include much more efficient feature extraction and the ability to identify larger
numbers of features. On the other hand, the affine invariance property is useful for match-
ing planar surfaces under very large view changes, and the ultimate approach is likely to
combine these feature types within a single system to gain the advantages of each.

Many other feature types have been proposed for use in recognition, many of which
which could be used in addition to the features described in this paper to extend the range
of performance. Nelson and Selinger (1998) have shown very good results with local fea-
tures based on image contours. Similarly, Pope and Lowe (2000) used features based on
the hierarchical grouping of image contours, which are particularly useful for objects lack-
ing detailed texture. Carneiro and Jepson (2002) describe phase-based local features that
represent the phase rather than the magnitude of local spatial frequencies, which provides
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improved invariance to illumination. Schiele and Crowley (2000) have proposed the use of
multidimensional histograms summarizing the distribution of measurements within image
regions. This type of feature may be particularly useful for recognition of textures and
objects with deformable shapes. Basri and Jacobs (1997) have demonstrated the value of
extracting local region boundaries for recognition. Other useful properties to incorporate
include color, motion, figure-ground discrimination, region shape descriptors, and stereo
depth cues. The local feature approach can easily incorporate novel feature types because
extra features contribute to robustness when they provide correct matches, but do little harm
otherwise.

3 Scale-space peak selection

As described in the introduction, we will detect keypoints using a sequential filtering ap-
proach that uses efficient algorithms to identify candidate locations that are then examined
in further detail. The first stage of keypoint detection is to identify locations and scales that
can be repeatably assigned under differing views of the same object. Detecting locations
that are invariant to scale change of the image requires that we search for stable features
across all possible changes of scale, using a continuous function of scale known as scale
space (Witkin, 1983).

It has been shown by Koenderink (1984) and Lindeberg (1994) that under a variety
of reasonable assumptions the only possible scale-space kernel is the Gaussian function.
Therefore, the scale space of an image is defined as a function,

���������	��
��
, that is produced

from the convolution of a variable-scale Gaussian, � �������	��
��
, with an input image,  ��������� :

���������	��
���� � �������	��
����  �����������
where

�
is the convolution operation in

�
and

�
, and

� �������	��
���� ���� 
���� �"!$#�%'&�(�%')+* �', %.-
To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe,
1999) using scale-space peaks in the difference-of-Gaussian function convolved with the
image, / �������	��
��

, which can be computed from the difference of two nearby scales sepa-
rated by a constant factor 0 :

/ �������1��
2�3� � � �������1� 0 
��54 � �������	��
��6���  ���������� ���������	� 0 
2�547���������	��
�� -
There are a number of reasons for choosing this function. First, it is a particularly

efficient function to compute, as the smoothed images,
�8�

need to be computed in any
case for scale space feature description, and / can therefore be computed by simple image
subtraction.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian,


 ��9:� � , as studied by Lindeberg (1994). Linde-
berg showed that the normalization of the Laplacian with the factor


 �
is required for true
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image
is down-sampled by a factor of 2, and the process repeated.

scale invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the
maxima and minima of


 ��9:� � produce the most stable image features compared to a range
of other possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between / and

 � 9 � � can be understood from the heat diffusion

equation (parameterized in terms of



rather than the more usual - � 
 �
):

. �. 
 � 
 9 � � -
From this, we see that

9 � � can be computed from the finite difference approximation to. �0/ . 

, using the difference of nearby scales at 0 
 and



:


 9 � � � . �. 
21 � �������	� 0 
2�54 � �������	��
��
0 
 4 


and therefore,

� �������1� 0 
��54 � �������	��
�� 1 � 0 4 � � 
 � 9 � � -
This shows that when the difference-of-Gaussian function has scales differing by a constant
factor it already incorporates the


 �
scale normalization required for the Laplacian. The

factor
� 0 4 � � in the equation is a constant over all scales and therefore does not influence
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Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

peak location. The approximation error will go to zero as 0 goes 1, but in practice we have
found that the approximation has almost no impact on the stability of peak detection or
localization for even significant differences in scale, such as 0 �
	 �

.
An efficient approach to construction of / �������	��
��

is shown in Figure 1. The input im-
age is incrementally convolved with Gaussians to produce images separated by a constant
factor 0 in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of



) into an integer number, � , of intervals, so 0 � �� *�� -

Adjacent image scales are subtracted to produce the difference-of-Gaussian images shown
on the right. Once a complete octave has been processed, we resample the Gaussian image
that has twice the initial value of



by taking every second pixel in each row and column.

The accuracy of sampling relative to



is no different than for the previous octave, while
computation is greatly reduced.

3.1 Peak detection

Our goal is to detect the locations of all local maxima and minima (peaks) of / �������	��
��
,

the difference-of-Gaussian function convolved with the image in scale space. This can be
done most efficiently by first building a scale space representation that samples the function
at a regular grid of locations and scales. Each sample point is checked to see whether it is
larger or smaller than all neighbors, using neighbors in both image location and scale. We
check the eight closest neighbors in image location and nine neighbors in the scale above
and below (see Figure 2). While extremum candidates could be detected by checking fewer
neighbors, experimental results show a significant improvement in stability by selecting an
extremum over this larger neighborhood. The cost of this check is reasonably low due to
the fact that most sample points will be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale
domains that is needed to detect the peaks. Unfortunately, it turns out that there is no
minimum spacing of samples that will detect all peaks, as peaks can be arbitrarily close
together. This can be seen by considering a white circle on a black background, which
will have a single scale space maximum where the circular positive central region of the
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Figure 3: The top line in the graph shows the percent of keypoint locations that are repeatably
detected in a transformed image as a function of the number of scales sampled per octave. The other
lines show the percent of descriptors correctly matched to a large database and the total number of
correctly matched keypoints (scaled arbitrarily to fit on the graph).

difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. Therefore, for
some ellipse with intermediate elongation, there will be a transition from a single maximum
to two, with the maxima arbitrarily close to each other near the transition.

Therefore, we must settle for a solution that trades off efficiency with completeness.
In fact, as might be expected and is confirmed by our experiments, peaks that are close
together are quite unstable to small perturbations of the image. We can determine the best
results experimentally by studying a range of sampling frequencies and using those that
provide the best results under a realistic simulation of the matching task.

3.2 Frequency of sampling in scale

The experimental determination of sampling frequency that maximizes peak stability is
shown in Figures 3 and 4. These figures (and most other simulations in this paper) are
based on a matching task using a collection of 32 real images drawn from a diverse range,
including outdoor scenes, human faces, aerial photographs, and industrial images (the im-
age domain was found to have almost no influence on any of the results). Each image
was then subject to a range of transformations, including rotation, scaling, affine stretch,
change in brightness and contrast, and addition of image noise. Because the changes were
synthetic, it was possible to precisely predict where each feature in an original image should
appear in the transformed image, allowing for measurement of matching correctness and
positional accuracy for each feature.

Figure 3 shows these simulation results used to examine the effect of varying the num-
ber of scales per octave at which the image function is sampled prior to peak detection.
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In this case, each image was resampled following rotation by a random angle and scaling
by a random amount between 0.1 of 0.9 times the original size. Keypoints from the re-
duced resolution image were matched to those from the original image so that the scales
for all keypoints would be be present in the matched image. In addition, 1% image noise
was added, meaning that each pixel had a random number added from the uniform interval
[-0.01,0.01] where pixel values are in the range [0,1] (equivalent to providing slightly less
than 6 bits of accuracy for image pixels).

The top line in the graph of Figure 3 shows the percent of keypoints that are detected at
a matching location and scale in the transformed image. For all examples in this paper, we
define a matching scale as being within a factor of

	 �
of the correct scale, and a matching

location as being within



pixels, where



is the standard deviation of the smallest Gaussian
used in the difference-of-Gaussian function. As this graph shows, the highest repeatability
is obtained when sampling 3 scales per octave, and this is the number of scale samples used
for all other experiments throughout this paper.

It might seem surprising that the results do not continue to improve as more scales
are sampled. The reason is that this results in many more local peaks being detected, but
these peaks are less stable and therefore are less likely to be detected in the transformed
image. This is shown by the bottom line in the graph, which shows the relative number of
keypoints detected and correctly matched (the scale is chosen arbitrarily so that the line fits
on the same graph). This number of successful matches rises with increasing sampling of
scales, in spite of the fact that the percent of correctly matched keypoints falls as shown
by the middle line. Since the success of object recognition often depends more on the
quantity of correctly matched keypoints, as opposed to their percentage correct matching,
the lower line indicates that for many applications it will be optimal to use a larger number
of scale samples. However, the cost of computation also rises with this number, so for the
experiments in this paper we have chosen to use just 3 scale samples per octave.

3.3 Frequency of sampling in spatial domain

Just as we determined the frequency of sampling per octave of scale space, so we must
determine the frequency of sampling in the image domain relative to the scale of smooth-
ing. Given that peaks can be arbitrarily close together, there will be an inevitable tradeoff
between sampling frequency and rate of detection. Figure 4 shows an experimental deter-
mination of the amount of prior smoothing,



, that is applied to each image level before

building the scale space representation for an octave. Again, the top line is the repeatability
of keypoint detection, and the results show that the repeatability continues to increase with


. However, there is a cost to using a large



in terms of efficiency and a reduced number
of keypoints (shown by the lower line). Therefore, we have chosen to use


 � � -�� , which
provides close to optimal repeatability. This value is used throughout this paper and was
used for the results in Figure 3.

Of course, if we pre-smooth the image before peak detection, we are effectively dis-
carding the highest spatial frequencies. Therefore, to make full use of the input, the image
can be expanded to create more sample points than were present in the original. We double
the size of the input image using linear interpolation prior to building the first level of the
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Figure 4: The top line in the graph shows the percent of keypoint locations that are repeatably
detected as a function of the prior image smoothing before resampling each new octave. The other
lines show the percent of descriptors correctly matched to a large database and the relative number
of matched keypoints.

pyramid. While the equivalent operation could effectively have been performed by using
sets of offset filters on the original image, the image doubling led to a more efficient imple-
mentation. We assume that the original image has a blur of at least


 ��� -�� (the minimum
needed to prevent significant aliasing), and that therefore the doubled image has


 � � - �
relative to its new pixel spacing. This means that little additional smoothing is needed prior
to creation of the first octave of scale space. The image doubling increases the number of
stable keypoints by almost a factor of 4, but no further improvements were found with a
larger expansion factor.

4 Accurate keypoint localization

Once a peak candidate has been found by comparing a pixel to its neighbors, the next
step is to perform a detailed fit to the nearby data for location, edge response, and peak
magnitude. This information allows points to be rejected that have low contrast (and are
therefore sensitive to noise) or are poorly localized along an edge.

The initial implementation of this approach (Lowe, 1999) simply located keypoints at
the location and scale of the central sample point. However, recently Brown has developed
a method (Brown and Lowe, 2002) for fitting a 3D quadratic function to the local sample
points to determine the interpolated location of the maximum, and his experiments showed
that this provides a substantial improvement to matching and stability. His approach uses
the Taylor expansion (up to the quadratic terms) of the scale-space function, / �������1��
2�

,
shifted so that the origin is at the sample point:
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/ ��� ��� / � . /. � � � � �� ��� . � /. �2� � (1)

where / and its derivatives are evaluated at the sample point and
� � �������	��
�� �

is the offset
from this point. The location of the extremum, �� , is determined by taking the derivative of
this function with respect to

�
and setting it to zero, giving

�� � 4 . � /. �2� � � . /. � - (2)

As suggested by Brown, the Hessian and derivative of / are approximated by using dif-
ferences of neighboring sample points. The resulting 3x3 linear system can be solved with
minimal cost. If the offset �� is larger than 0.5 in any dimension, then it means that the
extremum lies closer to a different sample point. In this case, the sample point is changed
and the interpolation performed instead about that point. The final offset �� is added to the
location of its sample point to get the interpolated estimate for the location of the extremum.

The function value at the peak, / � �� � , is useful for rejecting unstable peaks with low
contrast. This can be obtained by substituting equation (2) into (1), giving

/ � �� ��� / � ��
. /. � � �� -

For the experiments in this paper, all peaks with a value of / � �� � less than 0.03 were
discarded (as before, we assume image pixel values in the range [0,1]).

Figure 5 shows the effects of keypoint selection on a natural image. In order to avoid too
much clutter, a low-resolution 233 by 189 pixel image is used and keypoints are shown as
vectors giving the location, scale, and orientation of each keypoint (orientation assignment
is described below). Figure 5 (a) shows the original image, which is shown at reduced
contrast behind the subsequent figures. Figure 5 (b) shows the 832 keypoints at all maxima
and minima of the difference-of-Gaussian function, while (c) shows the 729 keypoints that
remain following removal of those with a value of / � �� � less than 0.03. Part (d) will be
explained in the following section.

4.1 Eliminating edge responses

For stability, it is not sufficient to reject keypoints with low contrast. The difference-of-
Gaussian function will have a strong response along edges, even if the location along the
edge is poorly determined and therefore unstable to small amounts of noise.

A poorly defined peak in the difference-of-Gaussian function will have a large principle
curvature across the edge but a small one in the perpendicular direction. The principle
curvatures can be computed from a 2x2 Hessian matrix, � , computed at the location and
scale of the keypoint:

� �	� / # # / # (/ # ( / ( (�
 (3)
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(a) (b)

(c) (d)
Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original im-
age. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian
function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After
applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that
remain following an additional threshold on ratio of principle curvatures.

The derivatives are estimated by taking differences of neighboring sample points.
The eigenvalues of H are proportional to the principle curvatures of / . Borrowing

from the approach used by Harris and Stephens (1988), we can avoid explicitly computing
the eigenvalues, as we are only concerned with their ratio. Let � be the largest of the
eigenvalues and

�
the smaller one. Then, we can compute the sum of the eigenvalues from

the trace of H and their product from the determinant:

����� � ��� / # #
� / ( (

�
�
� � �

���	��� � ��� / # # / ( (
4 � / # (

� � �
�
� -

Let 
 be the ratio between the largest and smallest eigenvalues, so that �
�


�

. Then,
���.� � � �
����� � � � � �

�
� � � �
�
�

� �


� � � � �


� � � �



� � � �



�

which depends only on the ratio of the eigenvalues rather than their individual values. The
quantity

�


� � � � /
 is at a minimum when the two eigenvalues are equal and it increases
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with 
 . Therefore, to check that the ratio of principle curvatures is below some threshold,

 , we only need to check

��� � � � �
���	� � � ���

�


� � � �



-
This is very efficient to compute, with less than 20 floating point operations required to
test each location. The experiments in this paper use a value of 


� � � , which eliminates
keypoints that have a ratio between the principle curvatures greater than 10. The transition
from Figure 5 (c) to (d) shows the effects of this operation.

5 Orientation assignment

By assigning a consistent orientation to each keypoint based on local image properties,
the keypoint descriptor can be represented relative to this orientation and therefore achieve
invariance to image rotation. This approach contrasts with the orientation invariant descrip-
tors of Schmid and Mohr (1997), in which each image property is based on a rotationally
invariant measure. The disadvantage of that approach is that it limits the descriptors that
can be used and discards image information by not requiring all measures to be based on a
consistent rotation.

Following experimentation with a number of approaches to assigning a local orienta-
tion, the following approach was found to give the most stable results. The scale of the
keypoint is used to select the Gaussian smoothed image,

�
, with the closest scale, as all

computations must be performed in a scale-invariant manner. For each image sample,
�
#�� ( ,

the gradient magnitude, � , and orientation, � , is precomputed using pixel differences:

� ��� � �
#�& � � (

47�
#.� � � (

� � � � �
#�� (�& �

47�
#�� ( � �

� �
� � �	��
 � � �6� � #�� (�& �

47�
#�� ( � �

� / � � #�& � � (
47�

#.� � � (
���

An orientation histogram is formed from the gradient orientations at all sample points
within a circular window around the keypoint. Each sample added to the histogram is
weighted by its gradient magnitude and by a Gaussian-weighted circular window with a



three times that of the scale of the keypoint. The orientation histogram has 36 bins covering
the 360 degree range of orientations.

Peaks in the orientation histogram correspond to dominant directions of local gradients.
The highest local peak in the histogram is detected, and then any other local peak that is
within 80% of the highest peak is used to also create a keypoint with that orientation.
Therefore, for locations with multiple peaks of similar magnitude, there will be multiple
keypoints created at the same location and scale but different orientations. Only about
15% of points are assigned multiple orientations, but these contribute significantly to the
stability of matching. Finally, a parabola is fit to the 3 histogram values around each peak
to interpolate the peak position for better accuracy.

Figure 6 shows the experimental stability of orientation assignment under differing
amounts of image noise. As before the images are rotated and scaled by random amounts.
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Figure 6: The top line in the graph shows the percent of keypoint locations that are repeatably
detected as a function of pixel noise. The second line shows the repeatability after also requiring
agreement in orientation. The bottom line shows the final percent of descriptors correctly matched
to a large database.

The top line shows the stability of keypoint location. The second line shows the stability of
matching when the orientation assignment is required to be within 15 degrees. As shown
by the gap between the top two lines, the orientation assignment remains accurate 95% of
the time even after addition of � � ��� pixel noise (equivalent to truncating pixel values to
less than 3 bits of precision). The measured variance of orientation for the correct matches
is about 2.5 degrees, rising to 3.9 degrees for 10% noise. The bottom line in Figure 6
shows the final accuracy of correctly matching a keypoint to a large database, which will
be discussed below.

6 The local image descriptor

The previous operations have assigned an image location, scale, and orientation to each
keypoint. These parameters impose a repeatable local 2D coordinate system in which to
describe the local image region, and therefore provide invariance to these parameters. The
next step is to compute a descriptor for the local image region that is highly distinctive yet
is as invariant as possible to remaining parameters, such as change in illumination or 3D
viewpoint.

One obvious approach would be to sample the local image intensities around the key-
point at the appropriate scale, and to match these using a normalized correlation measure.
However, simple correlation of image patches is highly sensitive to changes that cause mis-
registration of samples, such as affine or 3D viewpoint change or non-rigid deformations.
A better approach has been demonstrated by Edelman, Intrator, and Poggio (1997). Their
proposed representation was based upon a model of biological vision, in particular of com-
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point, as shown on the left. These are weighted by a Gaussian window,
indicated by the overlayed circle. These samples are then accumulated into orientation histograms
summarizing the contents over larger regions, as shown on the right, with the length of each arrow
corresponding to the sum of the gradient magnitudes near that direction within the region. To reduce
clutter, this figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas most
experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

plex neurons in primary visual cortex. These complex neurons respond to a gradient at a
particular orientation, but the location of the gradient on the retina is allowed to shift over a
small receptive field rather than being precisely localized. Edelman et al. hypothesized that
the function of these complex neurons was to allow for matching and recognition of 3D
objects from a range of viewpoints. They have performed detailed experiments using 3D
computer models of object and animal shapes which show that matching gradients while
allowing for shifts in their position results in much better classification under 3D rotation.
For example, recognition accuracy for 3D objects rotated in depth by 20 degrees increased
from 35% for correlation of gradients to 94% using the complex cell model. Our imple-
mentation described below was inspired by this idea, but allows for positional shift using a
different computational mechanism.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient
magnitudes and orientations are sampled around a keypoint, using the scale of the keypoint
to select the level of Gaussian blur for the image. For efficiency, the gradients are precom-
puted for all levels of the pyramid as described in Section 5. These are illustrated with
small arrows at each sample location on the left side of Figure 7.

A Gaussian weighting function with



equal to one half the width of the descriptor
window is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls
off smoothly. The purpose of this Gaussian window is to avoid sudden changes in the
descriptor with small changes in the position of the window, and to give less emphasis
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to gradients that are far from the center of the descriptor, as these are most affected by
misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for wider local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as
a sample shifts smoothly from being within one histogram to another or from one orienta-
tion to another. Therefore, linear interpolation is used to assign a weight to each histogram
entry according to the distance of the sample from its central value, and the gradient magni-
tude of a sample is distributed into the histogram accumulators according to these weights.

The descriptor is formed from a vector containing the values of all the orientation his-
togram entries, corresponding to the lengths of the arrows on the right side of Figure 7. The
figure shows a 2x2 array of orientation histograms, whereas our experiments below show
that best results are achieved with a 4x4 array of histograms with 8 orientation bins in each.
Therefore, the experiments in this paper use a 4x4x8 = 128 element feature vector for each
keypoint.

Finally, the feature vector is normalized to reduce the effects of illumination change.
First, the vector is normalized to unit length. A change in image contrast in which each
pixel value is multiplied by a constant will multiply gradients by the same constant, so this
contrast change will be cancelled by vector normalization. A brightness change in which a
constant is added to each image pixel will not affect the gradient values, as they are com-
puted from pixel differences. However, non-linear illumination changes can also occur due
to camera saturation or illumination changes that affect surfaces with different orientations
by differing amounts. These effects can cause a large change in relative magnitudes for
some gradients, but are less likely to affect the gradient orientations. Therefore, we reduce
the influence of gradient magnitudes by thresholding the values in the unit feature vector to
each be no larger than 0.2, and then renormalizing to unit length. This means that matching
the magnitudes for large gradients is no longer as important, and that the distribution of
orientations has greater emphasis. The value of 0.2 was determined experimentally using
differing illuminations for the same objects.

6.2 Descriptor testing

There are two parameters that can be used to vary the complexity of the descriptor: the
number of orientations, 
 , in the histograms, and the width, � , of the ����� array of ori-
entation histograms. The size of the resulting descriptor vector is 
��

�
. As the complexity

of the descriptor grows, it will be able to discriminate better in a large database, but it will
also be more sensitive to shape distortions and occlusion.

Figure 8 shows experimental results in which the number of orientations and size of the
descriptor were varied. The graph was generated for a viewpoint change in which a planar
surface is tilted by 50 degrees away from the viewer and 4% image noise is added. This
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Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000
keypoints as a function of size of the ����� keypoint descriptor and the number of orientations in
each histogram. The graph is computed for an image with an affine viewpoint change of 50 degrees
and addition of 4% image noise.

is near the limits of reliable matching, as it is in these difficult cases that descriptor perfor-
mance is most important. The results show the percent of keypoints that correctly match to
the single closest neighbor among a database of about 40,000 keypoints from 32 images.
The graph shows that a single orientation histogram ( �

� � ) is very poor at discriminating,
but the results continue to improve up to a 4x4 array of histograms with 8 orientations.
After that, adding more orientations or a larger descriptor can actually hurt matching by
making the descriptor more sensitive to distortion. These results were broadly similar for
other degrees of viewpoint change and noise, although in some simpler cases discrimina-
tion continued to improve (from already high levels) with 5x5 and higher descriptor sizes.
Throughout this paper we use a 4x4 descriptor with 8 orientations, resulting in feature
vectors with 128 dimensions. While the dimensionality of the descriptor may seem high,
we have found that it consistently performs better than lower-dimensional descriptors on a
range of matching tasks.

6.3 Sensitivity to affine change

The sensitivity of the 4x4 descriptor to affine change is examined in Figure 9. The graph
shows the reliability of keypoint location selection, orientation assignment, and nearest-
neighbor matching to a database as a function of rotation in depth of a plane away from a
viewer. It can be seen that each stage of computation has reduced stability with increasing
affine distortion, but that the final matching accuracy remains above 50% out to a 50 degree
change in viewpoint.

To achieve reliable matching over a wider viewpoint angle, one of the affine-invariant
detectors could be used to select and resample image regions, as discussed in Section 2.
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Figure 9: This graph shows the stability of detection for keypoint location, orientation, and final
matching to a database as a function of affine distortion. The degree of affine distortion is expressed
in terms of the equivalent viewpoint rotation in depth for a planar surface.

As mentioned there, none of these approaches is truly affine-invariant, as they all start
from initial feature locations determined in a non-affine-invariant manner. In what seems
to be the most affine-invariant method, Mikolajczyk (2002) has proposed and run detailed
experiments with the Harris-affine detector. He found that while its keypoint repeatability
is below that given here out to about a 50 degree viewpoint angle, it then retains about
40% repeatability out to an angle of 70 degrees, which provides much better performance
for extreme affine changes. The disadvantages are a much higher computational cost, a
substantial reduction in the number of keypoints, and poorer repeatability for small affine
changes due to errors in assigning a consistent affine frame under noise. In practice, the
allowable range of rotation for 3D objects is considerably less than for planar surfaces, so
affine invariance is usually not the limiting factor in the ability to match across viewpoint
change. For many practical applications, training images would need to be gathered from
a range of viewpoints (about every 30 to 45 degrees) to capture non-planar changes in
3D objects, so there may not be a need to match across very large affine changes. The
most important comparison for future testing would be to test on non-planar 3D objects
with changes in viewpoint, but these experiments remain to be done. In the future, it may
prove optimal to combine many feature types, including both affine and non-affine invariant
features, to gain the benefits of each.

6.4 Matching to large databases

An important remaining issue for measuring the distinctiveness of features is how the re-
liability of matching varies as a function of the number of features in the database being
matched. Most of the examples in this paper are generated using a database of 32 images
with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a
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Figure 10: The dashed line shows the percent of keypoints correctly matched to a database as a
function of database size (using a logarithmic scale). The solid line shows the percent of keypoints
assigned the correct location and orientation.

function of database size. This figure was generated using a larger database of 112 images,
with a viewpoint depth rotation of 30 degrees and 2% image noise in addition to the usual
random image rotation and scale change.

The dashed line shows the portion of image features for which the nearest neighbor in
the database was the correct match, as a function of database size. The leftmost point is
matching against features from only a single image while the rightmost point is selecting
matches from a database of all features from the 112 images. It can be seen that matching
reliability does decrease as a function of the number of distractors, yet all indications are
that many correct matches will continue to be found out to very large database sizes.

The solid line is the percentage of keypoints that were identified at the correct matching
location and orientation in the transformed image, so it is only these points that have any
chance of having matching descriptors in the database. The reason this line is flat is that
the test was run over the full database for each value, while only varying the portion of the
database used for distractors. It is of interest that the gap between the two lines is small,
indicating that matching failures are due more to issues with initial feature localization
and orientation assignment than to problems with feature distinctiveness, even out to large
database sizes.

7 Application to object recognition

The major topic of this paper is the derivation of distinctive invariant keypoints, as de-
scribed above. However, to demonstrate their application, we will now give a brief de-
scription of their use for object recognition in the presence of clutter and occlusion. More
details on applications of these features to recognition are available in other papers (Lowe,
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Figure 11: The probability that a match is correct can be determined by taking the ratio of distance
from the closest neighbor to the distance of the second closest. Using a database of 40,000 key-
points, the solid line shows the PDF of this ratio for correct matches, while the dotted line is for
matches that were incorrect.

1999; Lowe, 2001; Se, Lowe and Little, 2002).
Object recognition is performed by first matching each keypoint independently to the

database of keypoints extracted from training images. Many of these initial matches will be
incorrect due to ambiguous features or features that arise from background clutter. There-
fore, clusters of at least 3 features are first identified that agree on an object and its pose,
as these clusters have a much higher probability of being correct than individual feature
matches. Then, each cluster is checked by performing a detailed geometric fit to the model,
and the result is used to accept or reject the interpretation.

7.1 Keypoint matching

The best candidate match for each keypoint is found by identifying its nearest neighbor
in the database of keypoints from training images. The nearest neighbor is defined as the
keypoint with minimum Euclidean distance for the invariant descriptor vector as described
in Section 6. There is no need to adjust the weightings for the dimensions of the descriptor
vector (as was necessary for the rotational invariants used by Schmid and Mohr (1997),
as all elements of the descriptor are derived in the same manner and carry an equivalent
amount of information.

However, many features from an image will have no reliable match in the training
database because they arise from background clutter or have ambiguous matches. There-
fore, it would be useful to have a way to measure the reliability of each individual feature
match. This cannot be done based just on individual feature distance, as some descriptors
are much more discriminative than others. A more effective measure is obtained by com-
paring the distance to the closest neighbor to that of the second-closest neighbor. If there
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are multiple training images of the same object, then we define the second-closest neigh-
bor as being the closest neighbor that is known to come from a different object than the
first. This measure is effective because correct matches need to have the closest neighbor
significantly closer than the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within similar distances due
to the high dimensionality of the feature space. We can think of the second-closest match
as providing an estimate of the density of false matches within this portion of the feature
space and at the same time identifying specific instances of ambiguous features.

Figure 11 shows the value of this measure for real image data. The probability density
functions for correct and incorrect matches are shown in terms of the ratio of closest to
second-closest neighbors of each keypoint. Matches for which the nearest neighbor was
a correct match had a PDF that is centered at a much lower ratio than that for incorrect
matches. For our object recognition implementation, we reject all matches in which the
distance ratio is greater than 0.8, which eliminates 90% of the false matches while discard-
ing less than 5% of the correct matches. This figure was generated by matching images
following random scale and orientation change, a depth rotation of 30 degrees, and addi-
tion of 2% image noise, against a database of 40,000 keypoints from 32 images.

7.2 Efficient nearest neighbor indexing

Unfortunately, there are no efficient algorithms to identify the exact nearest neighbor of a
point in high dimensional spaces. Our keypoint descriptor has a 128-dimensional feature
vector, and the best algorithms, such as the k-d tree (Friedman et al., 1977) provide almost
no speedup over exhaustive search for such a high number of dimensions. Therefore, we
have developed an approximate algorithm, called the Best-Bin-First (BBF) algorithm (Beis
and Lowe, 1997). This is approximate in the sense that it returns the closest neighbor with
high probability, or else another point that is very close in distance to the closest neighbor.

The BBF algorithm modifies the k-d tree algorithm to search bins in feature space in
the order of their closest distance from the query location. This requires the use of a heap-
based priority queue for efficient determination of search order. An approximate answer is
returned by cutting off further search after a specific number of the nearest bins have been
explored. In our implementation, we cut off search after checking the first 200 nearest-
neighbor candidates. For a database of 40,000 keypoints, this provides a speedup over
exact nearest neighbor search by about 2 orders of magnitude yet results in almost no loss
in the number of correct matches. One reason the BBF algorithm works particularly well
for this problem is that we only consider matches in which the nearest neighbor is less
than 0.8 times the distance to the second-closest neighbor (as described in the previous
section), and therefore there is no need to exactly solve the most difficult cases in which
many neighbors are at very similar distances.

7.3 Clustering with the Hough transform

To maximize the performance of object recognition for small or highly occluded objects,
we wish to identify objects with the fewest possible number of feature matches. We have
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found that reliable recognition is possible with as few as 3 features. A typical cluttered
image contains 2,000 or more features which may come from many different objects as
well as background clutter. While the distance ratio test described in Section 7.1 will allow
us to discard many of the false matches arising from background clutter, this does not
remove matches from other valid objects, and we often still need to identify correct subsets
of matches containing less than 1% inliers among 99% outliers. Many well-known robust
fitting methods, such as RANSAC or Least Median of Squares, perform poorly when the
percent of inliers falls much below 50%. Fortunately, much better performance can be
obtained by clustering features in pose space using the Hough transform (Hough, 1962;
Ballard, 1981; Grimson 1990).

The Hough transform identifies clusters of features with a consistent interpretation by
using each feature to vote for all object poses that are consistent with the feature. When
clusters of features are found to vote for the same pose of an object, the probability of
the interpretation being correct is much higher than for any single feature. Each of our
keypoints specifies 4 parameters: image location, scale, and orientation, and each keypoint
has a record of the keypoint’s parameters relative to the training image in which it was
found. Therefore, we can create a Hough transform entry predicting the model location,
orientation, and scale from the match hypothesis. This prediction has large error bounds,
as the similarity transform implied by these 4 parameters is only an approximation to the
full 6 degree-of-freedom pose for a 3D object and also does not account for any non-rigid
deformations. Therefore, we use broad bin sizes of 30 degrees for orientation, a factor of
2 for scale, and 0.25 times the maximum projected training image dimension for location.
To avoid the problem of boundary effects in bin assignment, each keypoint match is placed
into the 2 closest bins in each dimension, giving a total of 16 entries for each hypothesis
and further broadening the pose range. Many of the potential bins will remain empty and it
is difficult to compute the range of possible bin values due to their mutual dependency, so
we use a second-level hash table in which all bins are hashed to a single one-dimensional
array in which clusters are finally detected.

7.4 Solution for affine parameters

The Hough transform is used to identify all clusters with at least 3 entries in a bin. Each
such cluster is then subject to a geometric verification procedure in which a least-squares
solution is performed for the best affine projection parameters relating the training image
to the new image.

An affine transformation correctly accounts for 3D rotation of a planar surface under
orthographic projection, but the approximation can be poor for 3D rotation of non-planar
objects. A more general solution would be to solve for the fundamental matrix (Luong and
Faugeras, 1996; Hartley and Zisserman, 2000). However, a fundamental matrix solution
requires at least 7 point matches as compared to only 3 for the affine solution and in practice
requires even more matches for good stability. We would like to perform recognition with
as few as 3 feature matches, so the affine solution provides a better starting point and we
can account for errors in the affine approximation by allowing for large residual errors. If
we imagine placing a sphere around an object, then rotation of the sphere by 30 degrees
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will move no point within the sphere by more than 0.25 times the projected diameter of the
sphere. For the examples of typical 3D objects used in this paper, an affine solution works
well given that we allow residual errors up to 0.25 times the maximum projected dimension
of the object. A more general approach is given in (Brown and Lowe, 2002), in which the
initial solution is based on a similarity transform, which then progresses to solution for the
fundamental matrix in those cases in which a sufficient number of matches are found.

The affine transformation of a model point
� � ��� �

to an image point
����� � �

can be written
as � � � 
 � � � � � �

��� �
	 
 � � � 
 � � - #- ( 

where the model translation is

� - # - (
� �

and the affine rotation, scale, and stretch are repre-
sented by the ��� parameters.

We wish to solve for the transformation parameters, so the equation above can be rewrit-
ten to gather the unknowns into a column vector:
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This equation shows a single match, but any number of further matches can be added, with
each match contributing two more rows to the first and last matrix. At least 3 matches are
needed to provide a solution.

We can write this linear system as � � ���
The least-squares solution for the parameters x can be determined by solving the corre-
sponding normal equations, � � � � � � � ��� � � � �
which minimizes the sum of the squares of the distances from the projected model loca-
tions to the corresponding image locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of articulated and flexible objects
(Lowe, 1991).

Outliers can now be removed by checking for agreement between each image feature
and the model. Given the more accurate least-squares solution, we now require each match
to agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected. As
outliers are discarded, the least-squares solution is re-solved with the remaining points, and
the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from
the Hough transform bin due to the similarity transform approximation or other errors.
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Figure 12: The training images for two objects are shown on the left. These can be recognized
in a cluttered image with extensive occlusion, shown in the middle. The results of recognition
are shown on the right overlaid on a reduced contrast version of the image. A parallelogram is
drawn around each recognized object showing the boundaries of the original training image under
the affine transformation solved for during recognition. Smaller squares indicate the keypoints that
were used for recognition.

The final decision to accept or reject a model hypothesis is based on a detailed prob-
abilistic model given in a previous paper (Lowe, 2001). This method first computes the
expected number of false matches to the model pose, given the projected size of the model,
the number of features within the region, and the accuracy of the fit. A Bayesian analysis
then gives the probability that the object is present based on the actual number of matching
features found. We accept a model if the final probability for a correct interpretation is
greater than 0.98. For objects that project to small regions of an image, 3 features may
be sufficient for reliable recognition. For large objects covering most of a heavily textured
image, the expected number of false matches is higher, and as many as 10 feature matches
may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left. The
middle image (of size 600x480 pixels) contains instances of these objects hidden behind
others and with extensive background clutter so that detection of the objects may not be im-
mediate even for human vision. The image on the right shows the final correct identification
superimposed on a reduced contrast version of the image. The keypoints that were used
for recognition are shown as squares with an extra line to indicate orientation. The sizes
of the squares correspond to the image regions used to construct the descriptor. An outer
parallelogram is also drawn around each instance of recognition, with its sides correspond-
ing to the boundaries of the training images projected under the final affine transformation
determined during recognition. Each instance of recognition in this example contains many
more than the minimum number of features needed for reliable recognition, indicating that
even higher levels of occlusion could be tolerated.
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Figure 13: This example shows location recognition within a complex scene. The training images
for locations are shown at the upper left and the 640x315 pixel test image taken from a different
viewpoint is on the upper right. The recognized regions are shown on the lower image, with key-
points shown as squares and an outer parallelogram showing the boundaries of the training images
under the affine transform used for recognition.

Another potential application of the approach is to place recognition, in which a mobile
device or vehicle could identify its location by recognizing familiar locations. Figure 13
gives an example of this application, in which training images are taken of a number of
locations. As shown on the upper left, these can even be of such seemingly non-distinctive
items as a shed wall or a tree with trash bins. The test image (of size 640 by 315 pixels) on
the upper right was taken from a viewpoint rotated about 30 degrees around the scene from
the original positions, yet the training image locations are easily recognized.

All steps of the recognition process can be implemented efficiently, so the total time
to recognize all objects in Figures 12 or 13 is less than 0.3 seconds on a 2GHz Pentium
4 processor. We have implemented these algorithms on a laptop computer with attached
video camera, and have tested them extensively over a wide range of conditions. In general,
textured planar surfaces can be identified reliably over a rotation in depth of up to 50 de-
grees in any direction and under almost any illumination conditions that provide sufficient
light and do not produce excessive glare. For 3D objects, the range of rotation in depth for
reliable recognition is only about 30 degrees in any direction and illumination change is
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more disruptive. For these reasons, 3D object recognition is best performed by integrating
features from multiple views, such as with local feature view clustering (Lowe, 2001).

These keypoints have also been applied to the problem of robot localization and map-
ping, which has been presented in detail in other papers (Se, Lowe and Little, 2001). In
this application, a trinocular stereo system is used to determine 3D estimates for keypoint
locations. Keypoints are used only when they appeared in all 3 images with consistent dis-
parities, resulting in very few outliers. As the robot moves, it localizes itself using feature
matches to the existing 3D map, and then incrementally adds features to the map while up-
dating their 3D positions using a Kalman filter. This provides a robust and accurate solution
to the long-standing problem of robot localization in unknown environments. This work
has also addressed the problem of place recognition, in which a robot can be switched on
and recognize its location anywhere within a large map (Se, Lowe and Little, 2002), which
corresponds to a complete 3D implementation of object recognition.

9 Conclusions

The keypoints described in this paper are particularly useful due to their distinctiveness,
which enables the correct match for a keypoint to be selected from a large database of other
keypoints. This distinctiveness is achieved by assembling a high-dimensional vector rep-
resenting the image gradients within a local region of the image. The keypoints have been
shown to be invariant to image rotation and scale and robust across a substantial range of
affine distortion, change in 3D viewpoint, addition of noise, and change in illumination.
Large numbers of keypoints can be extracted from typical images, which leads to robust-
ness in extracting small objects among clutter. The fact that keypoints are detected over a
complete range of scales means that small local features are available for matching small
and highly occluded objects, while large keypoints perform well for images subject to noise
and blur. Their computation is efficient, so that several thousand keypoints can be extracted
from a typical image with near real-time performance on standard PC hardware.

This paper has also presented methods for using the keypoints for object recognition.
The approach we have described uses fast nearest-neighbor lookup, a Hough transform
for identifying clusters that agree on object pose, least-squares pose determination, and fi-
nal verification. Other potential applications include view matching for 3D reconstruction,
motion tracking and segmentation, robot localization, image panorama assembly, epipo-
lar calibration, and any others that require identification of matching locations between
images.

There are many directions for further research in deriving invariant and distinctive im-
age features. The features described in this paper use only a monochrome intensity image,
so further distinctiveness could be derived from including illumination-invariant color de-
scriptors (Funt and Finlayson, 1995; Brown and Lowe, 2002). Similarly, local texture
measures appear to play an important role in human vision and could be incorporated into
feature descriptors in a more general form than the single spatial frequency examined by
the current descriptors. Another important feature type would be one that depends on the
boundary shape of region contours, such as the work on maximally-stable extremal regions
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(Matas et al., 2002; Schaffalitzky and Zisserman, 2002). An attractive aspect of the in-
variant local-feature approach to matching is that there is no need to select just one feature
type, and the best results are likely to be obtained by using many different features, all of
which can contribute useful matches and improve overall robustness.

The most general approach for future research will be to individually learn features that
are particularly suited to recognizing particular objects, which will be particularly impor-
tant for generic object classes that must cover a range of possible appearances. Weber,
Welling and Perona (2000) have shown the power of this approach by learning small sets
of local features that are suited to recognizing faces and cars. While use of a fixed feature
set would still be needed to allow for recognition from just a single training view, learning
could then be used to modify feature properties as more training views become available.

Acknowledgments

I would particularly like to thank Matthew Brown, who has suggested numerous improvements to
both the content and presentation of this paper and whose own work on feature localization and
invariance has contributed to this approach. In addition, I would like to thank many others for their
valuable suggestions, including Stephen Se, Jim Little, Krystian Mikolajczyk, Cordelia Schmid,
Tony Lindeberg, and Andrew Zisserman. This research was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) and through the Institute for Robotics and
Intelligent Systems (IRIS) Network of Centres of Excellence.

References

Ballard, D.H. 1981. Generalizing the Hough transform to detect arbitrary patterns. Pattern Recog-
nition, 13(2):111-122.

Basri, R., and Jacobs, D.W. 1997. Recognition using region correspondences. International Journal
of Computer Vision, 25(2):145-166.

Baumberg, A. 2000. Reliable feature matching across widely separated views. In Conference on
Computer Vision and Pattern Recognition, Hilton Head, South Carolina, pp. 774-781.

Beis, J. and Lowe, D.G. 1997. Shape indexing using approximate nearest-neighbour search in high-
dimensional spaces. In Conference on Computer Vision and Pattern Recognition, Puerto Rico,
pp. 1000-1006.

Brown, M. and Lowe, D.G. 2002. Invariant features from interest point groups. In British Machine
Vision Conference, Cardiff, Wales, pp. 656-665.

Carneiro, G., and Jepson, A.D. 2002. Phase-based local features. In European Conference on
Computer Vision (ECCV), Copenhagen, Denmark, pp. 282-296.

Crowley, J. L. and Parker, A.C. 1984. A representation for shape based on peaks and ridges in the
difference of low-pass transform. IEEE Trans. on Pattern Analysis and Machine Intelligence,
6(2):156-170.

Edelman, S., Intrator, N. and Poggio, T. 1997. Complex cells and object recognition. Unpublished
manuscript: http://kybele.psych.cornell.edu/ � edelman/archive.html

27



Friedman, J.H., Bentley, J.L. and Finkel, R.A. 1977. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209-226.

Funt, B.V. and Finlayson, G.D. 1995. Color constant color indexing. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 17(5):522-529.

Grimson, E. 1990. Object Recognition by Computer: The Role of Geometric Constraints, The MIT
Press: Cambridge, MA.

Harris, C. 1992. Geometry from visual motion. In Active Vision, A. Blake and A. Yuille (Eds.),
MIT Press, pp. 263-284.

Harris, C. and Stephens, M. 1988. A combined corner and edge detector. In Fourth Alvey Vision
Conference, Manchester, UK, pp. 147-151.

Hartley, R. and Zisserman, A. 2000. Multiple view geometry in computer vision, Cambridge Uni-
versity Press: Cambridge, UK.

Hough, P.V.C. 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654.

Koenderink, J.J. 1984. The structure of images. Biological Cybernetics, 50:363-396.

Lindeberg, T. 1993. Detecting salient blob-like image structures and their scales with a scale-
space primal sketch: a method for focus-of-attention. International Journal of Computer Vision,
11(3):283-318.

Lindeberg, T. 1994. Scale-space theory: A basic tool for analysing structures at different scales.
Journal of Applied Statistics, 21(2):224-270.

Lowe, D.G. 1991. Fitting parameterized three-dimensional models to images. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 13(5):441-450.

Lowe, D.G. 1999. Object recognition from local scale-invariant features. In International Confer-
ence on Computer Vision, Corfu, Greece, pp. 1150-1157.

Lowe, D.G. 2001. Local feature view clustering for 3D object recognition. IEEE Conference on
Computer Vision and Pattern Recognition, Kauai, Hawaii, pp. 682-688.

Luong, Q.T., and Faugeras, O.D. 1996. The fundamental matrix: Theory, algorithms, and stability
analysis. International Journal of Computer Vision, 17(1):43-76.

Matas, J., Chum, O., Urban, M., and Pajdla, T. 2002. Robust wide baseline stereo from maximally
stable extremal regions. In British Machine Vision Conference, Cardiff, Wales, pp. 384-393.

Mikolajczyk, K. 2002. Detection of local features invariant to affine transformations, Ph.D. thesis,
Institut National Polytechnique de Grenoble, France.

Mikolajczyk, K., and Schmid, C. 2002. An affine invariant interest point detector. In European
Conference on Computer Vision (ECCV), Copenhagen, Denmark, pp. 128-142.

Moravec, H. 1981. Rover visual obstacle avoidance. In International Joint Conference on Artificial
Intelligence, Vancouver, British Columbia, pp. 785-790.

Nelson, R.C., and Selinger, A. 1998. Large-scale tests of a keyed, appearance-based 3-D object
recognition system. Vision Research, 38(15):2469-88.

Pope, A.R., and Lowe, D.G. 2000. Probabilistic models of appearance for 3-D object recognition.
International Journal of Computer Vision, 40(2):149-167.

Schaffalitzky, F., and Zisserman, A. 2002. Multi-view matching for unordered image sets, or ‘How
do I organize my holiday snaps?”’ In European Conference on Computer Vision, Copenhagen,
Denmark, pp. 414-431.

28



Schiele, B., and Crowley, J.L. 2000. Recognition without correspondence using multidimensional
receptive field histograms. International Journal of Computer Vision, 36(1):31-50.

Schmid, C., and Mohr, R. 1997. Local grayvalue invariants for image retrieval. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 19(5):530-534.

Se, S., Lowe, D.G., and Little, J. 2001. Vision-based mobile robot localization and mapping us-
ing scale-invariant features. In International Conference on Robotics and Automation, Seoul,
Korea, pp. 2051-58.

Se, S., Lowe, D.G., and Little, J. 2002. Global localization using distinctive visual features. In In-
ternational Conference on Intelligent Robots and Systems, IROS 2002, Lausanne, Switzerland,
pp. 226-231.

Shokoufandeh, A., Marsic, I., and Dickinson, S.J. 1999. View-based object recognition using
saliency maps. Image and Vision Computing, 17:445-460.

Torr, P. 1995. Motion Segmentation and Outlier Detection, Ph.D. Thesis, Dept. of Engineering
Science, University of Oxford, UK.

Tuytelaars, T., and Van Gool, L. 2000. Wide baseline stereo based on local, affinely invariant
regions. In British Machine Vision Conference, Bristol, UK, pp. 412-422.

Weber, M., Welling, M. and Perona, P. 2000. Unsupervised learning of models for recognition. In
European Conference on Computer Vision, Dublin, Ireland, pp. 18-32.

Witkin, A.P. 1983. Scale-space filtering. In International Joint Conference on Artificial Intelligence,
Karlsruhe, Germany, pp. 1019-1022.

Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.T. 1995. A robust technique for matching
two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial
Intelligence, 78:87-119.

29


