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Motion Estimation

Thanks to Steve Seitz, Simon Baker, Takeo
Kanade, and anyone else who helped 
develop these slides.
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Why estimate motion?

We live in a 4-D world

Wide applications
• Object Tracking
• Camera Stabilization
• Image Mosaics
• 3D Shape Reconstruction 

(SFM)
• Special Effects (Match 

Move)



Frame from an ARDA Sample Video
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Change detection for surveillance
• Video frames: F1, F2, F3, …
• Objects appear, move, disappear
• Background pixels remain the same (simple case)

• How do you detect the moving objects?

• Simple answer: pixelwise subtraction
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Example: Person detected entering room

• Pixel changes detected as difference components

• Regions are (1) person, (2) opened door, and (3) computer 
monitor. 

• System can know about the door and monitor. Only the 
person region is “unexpected”.
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Change Detection via Image Subtraction

for each pixel [r,c]
if   (|I1[r,c] - I2[r,c]| > threshold) then Iout[r,c] = 1 else Iout[r,c] = 0

Perform connected components on Iout.

Remove small regions.

Perform a closing with a small disk for merging close neighbors.

Compute and return the bounding boxes B of each remaining region.

What assumption does this make about the changes?
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Change analysis

Known regions are ignored and system attends to the 
unexpected region of change. Region has bounding 
box similar to that of a person. System might then 
zoom in on “head” area and attempt face recognition.
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Optical flow
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Problem definition:  optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy:  a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion:  points do not move very far

This is called the optical flow problem
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Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
• brightness constancy:   Q:  what’s the equation?

• small motion:  (u and v are less than 1 pixel)
– suppose we take the Taylor series expansion of I:

H(x, y) = I(x+u, y+v)
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Optical flow equation
Combining these two equations

The x-component of
the gradient vector.

What is It  ? The time derivative of the image at (x,y)

How do we calculate it?
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Optical flow equation

Q:  how many unknowns and equations per pixel?
1 equation, but 2 unknowns (u and v)

Intuitively, what does this constraint mean?

• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown
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Aperture problem
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Aperture problem
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Solving the aperture problem
Basic idea:  assume motion field is smooth

Lukas & Kanade:  assume locally constant motion
• pretend the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel!

Many other methods exist.  Here’s an overview:
• Barron, J.L., Fleet, D.J., and Beauchemin, S, Performance of optical flow 

techniques, International Journal of Computer Vision, 12(1):43-77, 1994.
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Lukas-Kanade flow
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!
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RGB version
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!
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Lukas-Kanade flow
Prob:  we have more equations than unknowns

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade

for stereo matching (1981)
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Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
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Edges cause problems

– large gradients, all the same
– large λ1, small λ2
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Low texture regions don’t work

– gradients have small magnitude
– small λ1, small λ2
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High textured region work best

– gradients are different, large magnitudes
– large λ1, large λ2
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Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?
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Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?
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Reduce the resolution!
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Coarse-to-fine optical flow estimation

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels



27

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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A Few Details
• Top Level

• Apply L-K to get a flow field representing the flow from the 
first frame to the second frame.

• Apply this flow field to warp the first frame toward the second 
frame.

• Rerun L-K on the new warped image to get a flow field from 
it to the second frame.

• Repeat till convergence.

• Next Level
• Upsample the flow field to the next level as the first guess of 

the flow at that level.
• Apply this flow field to warp the first frame toward the second 

frame.
• Rerun L-K and warping till convergence as above.

• Etc.
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The Flower Garden Video

What should the
optical flow be?



30

Robust Visual Motion Analysis: 
Piecewise-Smooth Optical Flow

Ming YeMing Ye
Electrical Engineering

University of Washington
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Structure From Motion

Rigid scene + camera translation Estimated horizontal motion

Depth map
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Scene Dynamics Understanding

Brighter 
pixels =>
larger
speeds.

Estimated horizontal motion
• Surveillance
• Event analysis
• Video compression

Motion
boundaries
are smooth.

Motion smoothness
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Target Detection and Tracking

Tracking resultsA tiny airplane --- only 
observable by its distinct 
motion
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Estimating Piecewise-Smooth Optical Flow
with Global Matching and Graduated Optimization

Problem Statement:

Assuming only brightness conservation
and piecewise-smooth motion, find the 
optical flow to best describe the intensity 
change in three frames.
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Approach: Matching-Based Global 
Optimization

• Step 1.   Robust local gradient-based method for 
high-quality initial flow estimate.

• Step 2.   Global gradient-based method to improve the
flow-field coherence.

• Step 3.   Global matching that minimizes energy by a 
greedy approach.
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Global Energy Design
Global energy

∑ +=
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• V is the optical flow field.

• Vs is the optical flow at pixel (site) s.

• EB is the brightness conservation error.

• ES is the flow smoothness error in a neighborhood about   pixel s.
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Global Energy Design
Brightness error

warping error
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Global Energy Design

Smoothness error
∑
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Smoothness error is computed in a neighborhood around pixel s.

Vnw Vn Vne
Vw Vs Ve
Vsw Vs Vse

22

2

),(
x

xx
+

=
σ

σρError function:



Overall Algorithm
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Advantages

Best of Everything
• Local OFC

– High-quality initial flow estimates
– Robust local scale estimates

• Global OFC
– Improve flow smoothness

• Global Matching
– The optimal formulation
– Correct errors caused by poor gradient quality and hierarchical 

process

Results: fast convergence, high accuracy, simultaneous motion 
boundary detection
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Experiments

• Experiments were run on several standard test videos.

• Estimates of optical flow were made for the middle
frame of every three.

• The results were compared with the Black and
Anandan algorithm.
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TS: Translating Squares
Homebrew, ideal setting, test performance upper bound

Groundtruth (cropped),
Our estimate looks the same

64x64, 1pixel/frame
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TS: Flow Estimate Plots

BA S1 (S2 is close)LS

S3 looks the same as the groundtruth.

S1, S2, S3: results from our Step I, II, III (final)
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TT: Translating Tree

BA
S3

150x150 (Barron 94)

BA    2.60     0.128    0.0724
S3     0.248   0.0167  0.00984

)(o∠e )(pix||•e )(pixe

e: error in pixels, cdf: culmulative distribution function for all pixels
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DT: Diverging Tree

150x150 (Barron 94)

BA
S3

BA    6.36      0.182      0.114
S3     2.60      0.0813    0.0507

)(o∠e )(pix||•e )(pixe
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YOS: Yosemite Fly-Through

BA    2.71      0.185      0.118
S3     1.92      0.120      0.0776

)(o∠e )(pix||•e )(pixe
BA
S3

316x252 (Barron, cloud excluded)
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TAXI: Hamburg Taxi

256x190, (Barron 94)
max speed 3.0 pix/frame

LMS BA

Error mapOurs Smoothness error
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Traffic

512x512
(Nagel)

max speed:
6.0 pix/frame

BA

Ours Error map Smoothness error
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Pepsi Can

201x201
(Black)

Max speed:
2pix/frame Ours

Smoothness
errorBA
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FG: Flower Garden

360x240 (Black)
Max speed: 7pix/frame

BA LMS

Ours Error map Smoothness error
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