
Edge Detection

EE/CSE 576
Linda Shapiro

Edge

Attneave's Cat (1954)

2

Edges are caused by a variety of factors.

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Origin of edges

Characterizing edges
• An edge is a place of rapid change in the

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

4

• The gradient of an image:

• The gradient points in the direction of most rapid change in intensity

Image gradient

5

The discrete gradient
• How can we differentiate a digital image

F[x,y]?
– Option 1: reconstruct a continuous image, then

take gradient
– Option 2: take discrete derivative (“finite

difference”)

6

The gradient direction is given by:

 How does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

Simple image gradient

How would you implement this as a filter?

7

perpendicular

or various
simplifications

0 -1 1

Sobel operator

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Magnitude:

Orientation:

In practice, it is common to use:

What’s the C/C++ function?
Use atan2

Who was Sobel?

Sobel operator

Original Orientation Magnitude

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
10

Effects of noise

• Difference filters respond strongly to noise
– Image noise results in pixels that look very

different from their neighbors
– Generally, the larger the noise the stronger the

response

• What can we do about it?

Source: D. Forsyth 11

Where is the edge?

Solution: smooth first

Look for peaks in
12

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx
dfgf

dx
d

∗=∗)(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Source: S. Seitz How can we find (local) maxima of a function? 13

We don’t
do that.

Remember:
Derivative of Gaussian filter

x-direction y-direction

14

Laplacian of Gaussian
• Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph 15

2D edge detection filters

 is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

16

Edge detection by subtraction

original
17

Edge detection by subtraction

smoothed (5x5 Gaussian)
18

Edge detection by subtraction

smoothed – original
(scaled by 4, offset +128)

19

Using the LoG Function
(Laplacian of Gaussian)

• The LoG function will be
– Zero far away from the edge
– Positive on one side
– Negative on the other side
– Zero just at the edge

• It has simple digital mask implementation(s)
• So it can be used as an edge operator
• BUT, THERE’S SOMETHING BETTER

20

Canny edge detector

• This is probably the most widely used edge
detector in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei
21

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

The Canny edge detector

• original image (Lena)
22

Note:
I hate the
Lena images.

The Canny edge detector

norm of the gradient

23

The Canny edge detector

thresholding

24

Get Orientation at Each Pixel

theta = atan2(-gy, gx)

25

The Canny edge detector

26

The Canny edge detector

thinning
(non-maximum suppression)

27

Non-maximum suppression

• Check if pixel is local maximum along
gradient direction

Picture from Prem K Kalra
28

Canny Edges

30

Canny on Kidney

31

Canny Characteristics

• The Canny operator gives single-pixel-wide images
with good continuation between adjacent pixels

• It is the most widely used edge operator today; no
one has done better since it came out in the late 80s.
Many implementations are available.

• It is very sensitive to its parameters, which need to
be adjusted for different application domains.

32

Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges
• small detects fine features

33

An edge is not a line...

How can we detect lines ?

34

Finding lines in an image

• Option 1:
– Search for the line at every possible

position/orientation
– What is the cost of this operation?

• Option 2:
– Use a voting scheme: Hough transform

35

• Connection between image (x,y) and Hough
(m,b) spaces
– A line in the image corresponds to a point in Hough

space
– To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough space

Finding lines in an image

36

Hough transform algorithm
• Typically use a different parameterization

– d is the perpendicular distance from the line to the

origin
– θ is the angle of this perpendicular with the

horizontal.

37

Hough transform algorithm
• Basic Hough transform algorithm

1. Initialize H[d, θ]=0
2. for each edge point I[x,y] in the image

 for θ = 0 to 180

 H[d, θ] += 1

3. Find the value(s) of (d, θ) where H[d, θ] is maximum
4. The detected line in the image is given by

• What’s the running time (measured in # votes)?

38

1. How big is the array H?
2. Do we need to try all θ?

d

θ

Array H

Example

 0 0 0 100 100
 0 0 0 100 100
 0 0 0 100 100
100 100 100 100 100
100 100 100 100 100

 - - 0 0 -
 - - 0 0 -
90 90 40 20 -
90 90 90 40 -
 - - - - -

 - - 3 3 -
 - - 3 3 -
 3 3 3 3 -
 3 3 3 3 -
 - - - - -

360
 .
 6
 3
 0

 - - - - - - -
 - - - - - - -
 - - - - - - -
 4 - 1 - 2 - 5
 - - - - - - -

0 10 20 30 40 …90

360
 .
 6
 3
 0

- - - - - - -
 - - - - - - -
 - - - - - - -
 * - * - * - *
 - - - - - - -

(1,3)(1,4)(2,3)(2,4)

(3,1)
(3,2)
(4,1)
(4,2)
(4,3)

gray-tone image DQ THETAQ

Accumulator H PTLIST

distance
 angle

39

Chalmers University
 of Technology

40

Chalmers University
 of Technology

41

How do you extract the line segments from the
accumulators?

pick the bin of H with highest value V
while V > value_threshold {

• order the corresponding pointlist from PTLIST

• merge in high gradient neighbors within 10 degrees

• create line segment from final point list

• zero out that bin of H

• pick the bin of H with highest value V }

42

Line segments from Hough Transform

43

Extensions
• Extension 1: Use the image gradient

1. same
2. for each edge point I[x,y] in the image

 compute unique (d, θ) based on image gradient at (x,y)
 H[d, θ] += 1

3. same
4. same

• What’s the running time measured in votes?

• Extension 2
– give more votes for stronger edges

• Extension 3
– change the sampling of (d, θ) to give more/less resolution

• Extension 4
– The same procedure can be used with circles, squares, or any other shape,

How?
• Extension 5; the Burns procedure. Uses only angle, two different

quantifications, and connected components with votes for larger
one.

44

A Nice Hough Variant
The Burns Line Finder

1. Compute gradient magnitude and direction at each pixel.
2. For high gradient magnitude points, assign direction labels
 to two symbolic images for two different quantizations.
3. Find connected components of each symbolic image.

1
2 3

4
5

6 7
8 1

2 3 4
5
6 7 8

• Each pixel belongs to 2 components, one for each symbolic image.

• Each pixel votes for its longer component.

• Each component receives a count of pixels who voted for it.

• The components that receive majority support are selected.

-22.5

+22.5
0

45

45

Example

46

Quantization 1 Quantization 2

• Quantization 1 leads to 2 yellow components and 2 green.
• Quantization 2 leads to 1 BIG red component.
• All the pixels on the line vote for their Quantization 2
 component. It becomes the basis for the line.

1
2 3

4
5

6 7
8 1

2 3 4
5
6 7 8 -22.5

+22.5
0

Burns Example 1

47

Burns Example 2

48

Hough Transform for Finding Circles

Equations: r = r0 + d sin θ
c = c0 - d cos θ

r, c, d are parameters

Main idea: The gradient vector at an edge pixel points
 to the center of the circle.

*(r,c)
d

49

Why it works

Filled Circle:
Outer points of circle have gradient
direction pointing to center.

Circular Ring:
Outer points gradient towards center.
Inner points gradient away from center.

The points in the away direction don’t
accumulate in one bin!

50

51

Procedure to Accumulate Circles

• Set accumulator array A to all zero.
 Set point list array PTLIST to all NIL.

• For each pixel (R,C) in the image {
 For each possible value of D {
 - compute gradient magnitude GMAG
 - if GMAG > gradient_threshold {
 . Compute THETA(R,C,D)
 . R0 := R - D*sin(THETA)
 . C0 := C + D*cos(THETA)
 . increment A(R0,C0,D)
 . update PTLIST(R0,C0,D) }}

52

Finding lung nodules (Kimme & Ballard)

53

Finale

• Edge operators are based on estimating derivatives.
• While first derivatives show approximately where the

edges are, zero crossings of second derivatives were
shown to be better.

• Ignoring that entirely, Canny developed his own edge
detector that everyone uses now.

• After finding good edges, we have to group them into
lines, circles, curves, etc. to use further.

• The Hough transform for circles works well, but for
lines the performance can be poor. The Burns operator
or some tracking operators (old ORT pkg) work better.

54

	Edge Detection
	Edge
	Slide Number 3
	Characterizing edges
	Slide Number 5
	The discrete gradient
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Effects of noise
	Effects of noise
	Solution: smooth first
	Derivative theorem of convolution
	Remember:�Derivative of Gaussian filter
	Laplacian of Gaussian
	2D edge detection filters
	Edge detection by subtraction
	Edge detection by subtraction
	Edge detection by subtraction
	Using the LoG Function�(Laplacian of Gaussian)
	Canny edge detector
	The Canny edge detector
	The Canny edge detector
	The Canny edge detector
	Get Orientation at Each Pixel
	The Canny edge detector
	The Canny edge detector
	Non-maximum suppression
	Canny Edges
	Canny on Kidney
	Canny Characteristics
	Effect of  (Gaussian kernel spread/size)
	An edge is not a line...
	Finding lines in an image
	Finding lines in an image
	Hough transform algorithm
	Hough transform algorithm
	Example
	Slide Number 40
	Slide Number 41
	How do you extract the line segments from the accumulators?
	Line segments from Hough Transform
	Extensions
	A Nice Hough Variant�The Burns Line Finder
	Example
	Burns Example 1
	Burns Example 2
	Hough Transform for Finding Circles
	Why it works
	Procedure to Accumulate Circles
	Slide Number 52
	Finding lung nodules (Kimme & Ballard)
	Finale

