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Facial expressions : The art of non-
verbal communication

Source: https://www.globalintelconsultants.com/02-13-16-facial-expressions--the-art-of-non-verbal-communication.html




Creating recognizable expressions

= Accurate facial expression depiction is critical and difficult for storytelling.

= We asked professional animators to make this character look surprised. None of the
expressions achieved greater than 50% recognition on Mechanical Turk.
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Introduction

» Goal: accurate and perceptually correct facial expression transfer
e Capture human facial expression from 2D images
* Transfer the expression to multiple 3D stylized characters

> Related Work:
 Landmark mapping (manual labor intensive)
* Blendshape interpolation (memory intensive)

» We propose a generative method for expression transfer that ensures:
* Perceptually validity by using deep neural network features
* Geometric consistency by using geometric features



Related work: Landmark Mapping

Human input
followed by
landmark
detection

Associate character rig controls to
expression sets/landmark groups

Existing 3D model morphing



Related work: Blendshape Interpolation
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Drawbacks of existing methods

Geometric features transfer, expressions often do not!

Actual : Disgust Perceived : Angry

Actual : Sad | Perceived : Confused



Drawbacks of existing methods
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MPEG-4 : Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)

HapFACS : Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS- Based expressions for ECAs animation (ACIl). (2013) 270-275
FACSGen: Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through
systematic manipulation of facial action units. Journal of Nonverbal Behavior (2011) 1-16






Contributions

= A novel perceptually valid method to map 2D human face
images to 3D stylized character rig controls.

= The ability to utilize this mapping to generate 3D characters
with clear unambiguous facial expressions.

= Asemi-supervised method to enable expression transfer
between multiple characters.



Our Approach
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3D-CNN: Deep convolutional neural network for human to character transfer

C-MLP: Lightweight multi-layer perceptrons for character to character transfer
Advantage: No retraining of 3D-CNN required for a new character

Challenge: No existing dataset of matching 2D image — 3D character model pairs



Dataset and Preprocessing

Expression classes : Anger, Disgust, Fear, Neutral, Joy, Sadness, Surprise

SFEW, CK+, MMI, KDEF and DISFA
~100k images

Bounding box and
landmark detection;
frontalization and
geometry extraction

FERG-DB + 3 new characters
~55K images

3D rig parameters;
geometry extraction

Aneja et al., Modeling Stylized Character Expressions via Deep Learning, ACCV 2016



CNN for expression recognition
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Different activation functions in CNN
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Network Architecture
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Network Architecture
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Network Architecture
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Results
Human input - Character output

Expression: Sadness Expression: Surprise Expression: Disgust




Single Human to Multiple Characters
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Results: Video frame sequences

Expression: Anger

©

Source Primary Secondary
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Evaluation

Perceived character expression (%)

A D F J N Sa Su

: A 7132 16.28 | 543 | 1.55 | 3.10 | 0.78 | 1.55
g g D 11429 |6735| 4.08 | 1.02 | 4.08 | 8.16 | 1.02
- S F | 288 | 647 [64.03 | 2.16 | 3.60 | 3.60 | 1/.27
D @w| ] 1092 | 1.83 | 0.92 |90.83 | 1.83 | 0.92 | 2.75
'E ::.J_ N | 1.09  3.26 | 2.17 | 4.35 | 76.09 | 10.87 | 2.1/
QY | S5a | 130 | 3.60 | 2.70 | 1.80 | 18.02 | 71.17 | 0.90

Su | 052 | 104 | 7.77 | 1.55 | 0.52 | 0.52 | 88.08

Confusion matrix of expression recognition for 1000 test cases with 30 MT subjects



Evaluation

Input  Faceware ExprGen Input  Faceware ExprGen

Input expression: disgust Input expression: fear

Blue: Faceware, Red: Ours
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Average score

Quantitative comparison of expression transfer results
Faceware (blue bars) and ExprGen (red bars).




Applications

* Efficient visual storytelling:
AN

ND 17:21:33:04 &
SC_394R-AR7 ,TKAS A

video games motion capture films social VR experience

 Human-computer or human-robot interaction

* Helping autistic kids to recognize and convey emotions



Generative Adversarial Networks
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GAN training
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x: actual distribution of training data (black dotted line)
Z: random noise input
green solid line: distribution of generated samples
blue dotted line: discriminator loss
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GAN alternative; use of Autoencoder

Encoder
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Autoencoder:
x => Encoder -> Latent space ->
-> Decoder -> X’

Decoder

Adversarial network:
> Discriminator —> from p(z) or q(z)?
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Vector arithmetic with latent space in GAN

man man woman
with glasses without glasses without glasses

woman with glasses



Conditional Generative Adversarial Nets
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Outputs of GAN conditioned on attributes
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Thank youl!

Questions?





