Deep Facial Animation Retargeting from Humans to 3D Stylized Characters

Facial Expression Research Group (FERG), UW CSE

Deepali Aneja¹, Bindita Chaudhuri¹, Linda Shapiro¹, Barbara Mones¹, Alex Colburn², Gary Faigin³

¹Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle WA, USA ² Zillow Group, Seattle WA, USA ³ Gage Academy of Art, Seattle WA, USA

Facial expressions: The art of non-verbal communication

Creating recognizable expressions

- Accurate facial expression depiction is critical and difficult for storytelling.
- We asked professional animators to make this character look surprised. None of the expressions achieved greater than 50% recognition on Mechanical Turk.

Introduction

- ➤ **Goal:** accurate and perceptually correct facial expression transfer
 - Capture human facial expression from 2D images
 - Transfer the expression to multiple 3D stylized characters

Related Work:

- Landmark mapping (manual labor intensive)
- Blendshape interpolation (memory intensive)
- We propose a generative method for expression transfer that ensures:
 - Perceptually validity by using deep neural network features
 - Geometric consistency by using geometric features

Related work: Landmark Mapping

Human input followed by landmark detection

New 3D model generation

Existing 3D model morphing

Associate character rig controls to expression sets/landmark groups

Related work: Blendshape Interpolation

Performance capture using blendshapes; Regression-based estimation of weights

$$\mathbf{S}(t) = \sum_{i=1}^{k} \omega_{i}(t).\,\mathbf{B}_{\mathrm{si}}$$

$$\mathbf{T}(t) = \sum_{i=1}^{k} \omega_{i}(t).\,\mathbf{B}_{\mathrm{T}}$$

Drawbacks of existing methods

Geometric features transfer, expressions often do not!

Drawbacks of existing methods

MPEG-4: Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall PTR, Upper Saddle River, NJ, USA (2002)
HapFACS: Amini, R., Lisetti, C.: HapFACS: an open source API/Software to generate FACS- Based expressions for ECAs animation (ACII). (2013) 270–275
FACSGen: Roesch, E.B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., Scherer, K.R.: FACSGen: a tool to synthesize emotional facial expressions through systematic manipulation of facial action units. Journal of Nonverbal Behavior (2011) 1–16

Contributions

- A novel perceptually valid method to map 2D human face images to 3D stylized character rig controls.
- The ability to utilize this mapping to generate 3D characters with clear unambiguous facial expressions.
- A semi-supervised method to enable expression transfer between multiple characters.

Our Approach

3D-CNN: Deep convolutional neural network for human to character transfer

C-MLP: Lightweight multi-layer perceptrons for character to character transfer *Advantage*: No retraining of 3D-CNN required for a new character

Challenge: No existing dataset of matching 2D image – 3D character model pairs

Dataset and Preprocessing

Expression classes: Anger, Disgust, Fear, Neutral, Joy, Sadness, Surprise

SFEW, CK+, MMI, KDEF and DISFA ~100k images

Bounding box and landmark detection; frontalization and geometry extraction

FERG-DB + 3 new characters ~55K images

3D rig parameters; geometry extraction

CNN for expression recognition

Different activation functions in CNN

Name	Plot	Equation	Derivative		
Identity		f(x) = x	f'(x) = 1		
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$		
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))		
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$		
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$		
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$		
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$		
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$		
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$		

Network Architecture

Network Architecture

Network Architecture

Results **Human input - Character output**

Expression: Sadness

Expression: Anger

Expression: Surprise

Expression: Fear

Expression: Disgust

Expression: Joy

Single Human to Multiple Characters

Results: Video frame sequences

Evaluation

		Perceived character expression (%)								
			Α	D	F	J	N	Sa	Su	
Perceived human	expression (%)	Α	71.32	16.28	5.43	1.55	3.10	0.78	1.55	
		D	14.29	67.35	4.08	1.02	4.08	8.16	1.02	
		F	2.88	6.47	64.03	2.16	3.60	3.60	17.27	
		J	0.92	1.83	0.92	90.83	1.83	0.92	2.75	
		N	1.09	3.26	2.17	4.35	76.09	10.87	2.17	
	ex	Sa	1.80	3.60	2.70	1.80	18.02	71.17	0.90	
		Su	0.52	1.04	7.77	1.55	0.52	0.52	88.08	

Confusion matrix of expression recognition for 1000 test cases with 30 MT subjects

Evaluation

Quantitative comparison of expression transfer results Faceware (blue bars) and ExprGen (red bars).

Applications

Efficient visual storytelling:

video games

motion capture films

social VR experience

- Human-computer or human-robot interaction
- Helping autistic kids to recognize and convey emotions

Generative Adversarial Networks

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

GAN training

x: actual distribution of training data (black dotted line)

z: random noise input

green solid line: distribution of generated samples

blue dotted line: discriminator loss

GAN alternative; use of Autoencoder

Vector arithmetic with latent space in GAN

Conditional Generative Adversarial Nets

Outputs of GAN conditioned on attributes

References

- [Our ACCV'16 paper]: http://grail.cs.washington.edu/projects/deepexpr/deepali_accv2016.pdf
- [Our WACV'18 paper]: https://homes.cs.washington.edu/~bindita/2Dto3Dexpr_WACV.pdf
- **♦** [Faceware]: http://facewaretech.com/; geometry mapping technique based software
- [Blendshape interpolation]:

 https://www.researchgate.net/publication/320472350_Semi_Automatic_Retargeting_for_Facial_Ex

 pressions_of_3D_Characters_with_Fuzzy_logic_Based_on_Blendshape_Interpolation
- [List of GAN papers]: https://github.com/nightrome/really-awesome-gan
- ❖ [Facial Animation survey]: http://freesouls.github.io/2015/04/16/3d-facial-animation/index.html
- [Details about CNNs]: http://cs231n.github.io/convolutional-networks/

Thank you!

Questions?