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Current Main Effort: 4D Atlanta 4D Atlanta

Idea:
Take 10000 images over 100 years
Build a 3D model with a time slider

2 PhD Students
2 MSc Students

Assumptions about urban scenes (Manhattan), 
Symmetry (a la Yi Ma), Grammar-based inference, 
Markov chain Monte Carlo

Manhattan World

CVPR 2004 Poster, with Grant Schindler

Atlanta World The BORG lab

With Tucker Balch, Thad Starner

Real-Time Urban Reconstruction
•4D Atlanta, only real time, multiple cameras ☺
•Large scale SFM: closing the loop

The Biotracking Project:
Tracking Social Insects
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Overview

Influx of probabilistic modeling and inference…

Statistics

Computer
Vision

Robotics

…

Machine
Learning

A sample of Methods

Particle Filtering (Bootstrap Filter)
Monte Carlo Localization

MCMC
Multi-Target Tracking

Rao-Blackwellization
EigenTracking

MCMC + RB
Piecewise Continuous Curve Fitting
Probabilistic Topological Maps

Monte Carlo Localization

1D Robot Localization

Prior P(X)

Likelihood
L(X;Z)

Posterior
P(X|Z)

Importance Sampling

Densities are decidedly non-Gaussian
Histogram approach does not scale
Monte Carlo Approximation
Sample from P(X|Z) by:

sample from prior P(x)
weight each sample x(r) using an importance weight equal 
to likelihood L(x (r);Z)

1D Importance Sampling
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Sampling Advantages

Arbitrary densities
Memory = O(#samples)
Only in “Typical Set”
Great visualization tool !

minus: Approximate
Rejection and Importance Sampling do 
not scale to large spaces

Bayes Filter and Particle Filter

Monte Carlo Approximation:

Recursive Bayes Filter Equation:
Motion Model

Predictive Density

Particle Filter

π(3)π(1) π(2)

Empirical predictive density = Mixture Model

First appeared in 70’s, re-discovered by Kitagawa, Isard, … 

3D Particle filter for robot pose:
Monte Carlo Localization

Dellaert, Fox & Thrun ICRA 99

Multi-Target Tracking

An MCMC-Based Particle Filter for Tracking 
Multiple, Interacting Targets, ECCV 2004 Prague,
With Zia Khan & Tucker Balch

Motivation

How to track many INTERACTING targets ?



5

Traditional Multi-Target Tracking

In essence: curve fitting !

Ants are not Airplanes !

Interaction changes behavior

Results: Vanilla Particle Filters Our Solution: MRF Motion Model

MRF = Markov Random Field, built on the fly

Edges indicate interaction

Absence of edges indicates no interaction

MRF Interaction Factor

Pairwise MRF:

Joint MRF Particle Filter
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Results: Joint MRF Particle Filter

X’tXt

Solution: Marlov Chain Monte Carlo

Propose a move Q(X’t|Xt)
Calculate acceptance ratio

a =  Q(Xt | X’t) p(Xt) / Q(X’t | Xt) p(Xt) 
If a>=1, accept move
otherwise only accept move with probability a

X0
t

Start at X0
t

MCMC Particle Filter Results: MCMC

Quantitative Results (10K frames)
Rao-Blackwellized EigenTracking

Coming CVPR 2004 Talk,
With Zia Khan and Tucker Balch
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Motivation

Honeybees are more challenging ☺
Eigenspace Representation:

Generative PPCA Model (Tipping&Bishop)
Learned using EM, from 146 color images of bees

Particle Filter

Added dimensionality = problem
Solution: integrate out PPCA coefficients

Location

Appearance

Marginal Bayes Filter

Bayes filter for location and appearance

Marginalized to location only:

Rao-Blackwellized Filter
Hybrid approximation:

Location is sampled
Each sample carries a conditional Gaussian over the 
appearance coefficients
Marginalization with PPCA is very efficient

Simplified Filter

Dynamic Bayes Net:
Sampled

Gaussian
Approximation:

Sampled
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q=0 q=20

Dancers, q=10, n=500
Piecewise Continuous Curve-Fitting

ECCV 2004 Prague, with Michael Kaess and Rafal Zboinski

Reconstructing Objects with Jagged Edges
Subdivision Curves
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Tagged Subdivision Curves

Hughes Hoppe paper: piecewise 
smooth surface fitting

In this context: 
3D tagged subdivision curves

Tagged Curve Example

Rao-Blackwellized Sampling

MCMC sampling over discrete tag configurations
For each sample: optimize over control points
Approximate mode by a Gaussian
Marginalize Analytically

Marginals
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Probabilistic Topological Maps

Submissions to IROS, NIPS,
With Ananth Ranganathan

Motivation

Metric Maps
Topological Maps
How to reason about topology given incomplete or 
noisy observations ?

Problem
Odometry measurements are noisy:

Correct Topology and ML Path

Given ground truth topology, calculate ML path:

Probabilistic Topological Maps Set Partitions

Topologies ⇔ Set Partitions
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Bell numbers

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975
Combinatorial explosion !

Idea: use MCMC Sampling over topologies

MCMC Proposal

Pick k at random, assign it to group t in 1..m
Some possibilities:

original

Acceptance Ratio

Pick k at random, assign it to group t in 1..m

Rao-Blackwellized Sampling

MCMC sampling over discrete tag configurations
For each sample: optimize over robot trajectory
Approximate mode by a Gaussian
Marginalize Analytically

Results

The End


