A Sample of Monte Carlo Methods
in Robotics and Vision
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Current Main Effort: 4D Atlanta

4D Atlanta

Idea:
Take 10000 images over 100 years
Build a 3D model with a time slider

2 PhD Students
2 MSc Students
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Assumptions about urban scenes (Manhattan),

Symmetry (a la Yi Ma), Grammar-based inference,
Markov chain Monte Carlo

The BORG lab

i)
Atlanta World .
o)
CVPR 2004 Poster, with Grant Schindler
Real-Time Urban Reconstruction i

+4D Atlanta, only real time, multiple cameras ©
+Large scale SFM: closing the loop
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With Tucker Balch, Thad Starner
The Biotracking Project:
Tracking Social Insects ;
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Overview

Influx of probabilistic modeling and inference...

A sample of Methods

Particle Filtering (Bootstrap Filter)
Monte Carlo Localization

MCMC
Multi-Target Tracking

Rao-Blackwellization
EigenTracking

MCMC + RB
Piecewise Continuous Curve Fitting
Probabilistic Topological Maps

Monte Carlo Localization

1D Robot Localization
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Importance Sampling

Densities are decidedly non-Gaussian
Histogram approach does not scale
Monte Carlo Approximation
Sample from P(X|Z) by:

sample from prior P(x)

weight each sample x® using an equal
to likelihood L(x ®;Z)

1D Importance Sampling as
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Sampling Advantages

Arbitrary densities
Memory = O(#samples)
Only in “Typical Set”
Great visualization tool !

minus: Approximate

Bayes Filter and Particle Filter

Motion Model

Recursive Bayes Filter Equation:
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Predictive Density

Monte Carlo Approximation:
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Particle Filter
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Empirical predictive density = Mixture Model

Pl
@

/

) = P(Z|X]7)
First appeared in 70's, re-discovered by Kitagawa, Isard, ...

3D Particle filter for robot pose:
Monte Carlo Localization

Dellaert, Fox & Thrun ICRA 99

Multi-Target Tracking

An MCMC-Based Particle Filter for Tracking
Multiple, Interacting Targets, ECCV 2004 Prague,

With Zia Khan & Tucker Balch

Motivation

=

How to track many INTERACTING targets ?




Traditional Multi-Target Tracking

Ants are not Airplanes !

Interaction changes behavior

Our Solution: MRF Motion Model

MRF = Markov Random Field, built on the fly
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Absence of edges indicates no interaction

Edges indicate interaction
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In essence: curve fitting !
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Results: Vanilla Particle Filters s
MRF Interaction Factor i

Pairwise MRF:
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Joint MRF Particle Filter
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Results: Joint MRF Particle Filter s

Solution: Marlov Chain Monte Carlo
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O/QO/O\X"”Q/Q

Start at X%

Propose a move Q(X’|X,)
Calculate acceptance ratio
a= QX | X") p(X) 1 QX" | XY p(Xy)
If a>=1, accept move
otherwise only accept move with probability a

MCMC Particle Filter

Results;: MCMC

Quantitative Results (10K frames)
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Rao-Blackwellized EigenTracking
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Coming CVPR 2004 Talk,
With Zia Khan and Tucker Balch




Motivation o

Honeybees are more challenging ©
Eigenspace Representation:
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Generative PPCA Model (Tipping&Bishop)
Learned using EM, from 146 color images of bees

Particle Filter

Added dimensionality = problem
Solution: integrate out PPCA coefficients

Location @ -@
Appearance

Marginal Bayes Filter o

Bayes filter for location and appearance
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Marginalized to location only:
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Rao-Blackwellized Filter
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Hybrid approximation:
Plli_yaq) = P(li_1)Plag—q|li—1)
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Location is sampled

Each sample carries a conditional Gaussian over the
appearance coefficients

Marginalization with PPCA is very efficient

Simplified Filter s

Dynamic Bayes Net:

o 0
Gaussian
Approximation:
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Piecewise Continuous Curve-Fitting

ECCYV 2004 Prague, with Michael Kaess and Rafal Zboinski

Reconstructing Objects with Jagged Edges
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Subdivision Curves
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Tagged Subdivision Curves

Tagged Curve Example
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Hughes Hoppe paper: piecewise
smooth surface fitting
In this context:
3D tagged subdivision curves
Rao-Blackwellized Sampling ‘
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MCMC sampling over discrete tag configurations
For each sample: optimize over control points
Approximate mode by a Gaussian

Marginalize Analytically

P(TZ) = /f’((—)..’f'|Z}u’(-)

Marginals .
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Probatiity of being tagged




Motivation _—
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Metric Maps
Topological Maps

How to reason about topology given incomplete or
noisy observations ?

Correct Topology and ML Path
pology a5

Given ground truth topology, calculate ML path:
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Probabilistic Topological Maps
=
Submissions to IROS, NIPS,
With Ananth Ranganathan
Problem _
=4
Odometry measurements are noisy:
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Set Partitions
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Topologies < Set Partitions
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Bell numbers
_@
1, 2,5, 15,52, 203, 877, 4140, 21147, 115975
Combinatorial explosion !

Idea: use MCMC Sampling over topologies

MCMC Proposal

Acceptance Ratio

)
Pick k at random, assign it to group t in 1..m
Some possibilities:
original
Rao-Blackwellized Sampling ‘
=

MCMC sampling over discrete tag configurations
For each sample: optimize over robot trajectory
Approximate mode by a Gaussian

Marginalize Analytically

P(TZ) = /f’((—)..’i'|Z}u’(-)
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Pick k at random, assign it to group tin 1..m
Results o
=)

The End
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