

Goals

- Bayesian paradigm is a useful tool to
 Represent knowledge
 Perform inference
- **Sampling** is a nice way to implement the Bayesian paradigm, e.g. Condensation
- Markov chain Monte Carlo methods are a nice way to implement sampling

References

2

- Neal, Probabilistic Inference using MCMC Methods
- **Smith & Gelfand**, Bayesian Statistics Without Tears
- □ MacKay, Introduction to MC Methods
- Gilks et al, Introducing MCMC
- Gilks et al, MCMC in Practice

- Target Density P(x)
- Assumption: we can evaluate P(x) up to an arbitrary multiplicative constant

 \Box Why can't we just sample from P(x)??

Probability of a Segmentation

Very high-dimensional
 256*256 pixels = 65536 pixels
 Dimension of state space N = 65536 !!!!

binary segmentations = finite !
 65536² = 4,294,967,296

Representation P(Segmentation) Histogram ? I don't think so ! Assume pixels independent P(x1x2x2...)=P(x1)P(x2)P(x3)... Markov Random Fields Pixel is independent given its neighbors Clearly a problem ! Giveaway: samples !!!

Sampling in High-dimensional Spaces Exact schemes ? If only we were so lucky ! Rejection Sampling Rejection rate increase with N -> 100% Importance Sampling Same problem: vast majority weights -> 0

			Stationary Distribution
[100]	[0 1 0]	[0 0 1]	
— ——	_		\mathbf{q}_0
_8=			$\mathbf{q}_1 = \mathbf{K} \mathbf{q}_0$
			$q_2 = K q_1 = K^2 q_0$
			$q_3 = K q_2 = K^2 q_1 = K^3 q_0$
			$ q_{10} = K q_9 = \dots K^{10} q_0 $
1			

20

Step Size and #Samples - Too large: all rejected - Too small: random walk - E[d]=e sqrt(T) - Rule of thumb: T>=(L/e)²

Bummer: just a lower bound

Discussion Example

- e=1
- L=20
- T>=400
- Moral: avoid random walks

MCMC in high dimensions

- e=s_{min}
- L=s_{max}
- T=(s_{max}/s_{min})²
- Good news: no curse in N
- bad news: quadratic dependence