

Motivation

\square How to track many INTERACTING targets?

Dancers, $q=10, n=500$

References

\square Neal, Probabilistic Inference using MCMC Methods
\square Smith \& Gelfand, Bayesian Statistics Without Tears
\square MacKay, Introduction to MC Methods
Gilks et al, Introducing MCMC
Gilks et al, MCMC in Practice

Density Representation

\square Gaussian centered around mean x, y
\square Mixture of Gaussians
\square Finite element i.e. histogram
\square Larger spaces -> We have a problem!

Sampling Advantages

\square Arbitrary densities
\square Memory = O(\#samples)
\square Only in "Typical Set"
\square Great visualization tool!
\square minus: Approximate

The Good...

...and the Ugly.

Importance Sampling

\square Good Proposal Density would be: prior!
\square Problem:
\square No guaranteed c s.t. $c P(x)>=P(x \mid z)$ for all x

\square Idea:

\square sample from $P(x)$
\square give each sample $x^{(r)}$ a importance weight equal to $P(Z \mid \times(r))$

$$
\begin{gathered}
w_{r}=\frac{P^{*}\left(x^{(r)}\right)}{Q^{*}\left(x^{(r)}\right)} \\
E_{P(x)}[f(x)] \approx \frac{\sum_{r=1}^{R} w_{r} f\left(x^{(r)}\right)}{\sum_{r=1}^{R} w_{r}}
\end{gathered}
$$

Particle Filtering

Importance Sampling
\square Histogram approach does not scale
\square Monte Carlo Approximation
\square Sample from $P(X \mid Z)$ by:
\square sample from prior $P(x)$
\square weight each sample $x^{(r)}$ using an importance weight equal to likelihood $L(x(r) ; Z)$

3D Particle filter for robot pose:

 Monte Carlo LocalizationDellaert, Fox \& Thrun ICRA 99

Segmentation Example

-Binary Segmentation of image

Probability of a Segmentation

\square Very high-dimensional
$\square 256 * 256$ pixels $=65536$ pixels
\square Dimension of state space $N=65536!!!!!$
\square \# binary segmentations = finite !
$\square 65536^{2}=4,294,967,296$

Representation P(Segmentation)

\square Histogram? I don't think so!
\square Assume pixels independent

$$
P\left(x_{1} x_{2} x_{2} \ldots\right)=P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) \ldots
$$

\square Markov Random Fields
\square Pixel is independent given its neighbors
Clearly a problem!
\square Giveaway: samples !!!

Markov Chains

			Stationary Distribution
			IIII q_{0}
	Ma		Wh $\mathrm{q}_{1}=\mathrm{Kq}_{0}$
In	[1]	-1.	\|la $\mathrm{q}_{2}=\mathrm{Kq}_{1}=\mathrm{K}^{2} \mathrm{q}_{0}$
-1.	In	In	Wa $\mathrm{q}_{3}=\mathrm{Kq}_{2}=\mathrm{K}^{2} \mathrm{q}_{1}=\mathrm{K}^{3} \mathrm{q}_{0}$
III	114	11.	$1 /$
H14	\square	14	14
H14	14	H14	11
W14	H!	!n	11
IIL	11	14	11.
11	W1	W1\%	Wh $\mathrm{q}_{10}=\mathrm{K} \mathrm{q}_{9}=\ldots \mathrm{K}^{10} \mathrm{q}_{0}$

The Web as a Markov Chain

Where do we end up if we click hyperlinks randomly ?

Answer: stationary distribution!

Eigen-analysis

${ }^{\mathrm{K}}=$	0.5000	0.6000	$K E=E D$
0.6000	0.2000	0.3000	
0.3000	0.300	0.1000	Eigenvalue v_{1} always 1
E =			Stationary $=e_{1} /$ sum $\left(e_{1}\right)$
0.6396	0.7071	-0.2673	Stationary - $e_{1} / \operatorname{sum}\left(e_{1}\right)$
${ }^{0.6396}$	-0.7071	${ }^{0.8018}$	i.e. $K p=p$
0.4264	0.0000	-0.5345	
D $=$			
1.00000	0	0	
	. 4000	0	
	$0-0.20$		

Google Pagerank

Pagerank $==$ First Eigenvector of the Web Graph!

Computation assumes a 15\% "random restart" probability
Sergey Brin and Lawrence Page, The anatomy of a large-scale
hypertextual \{Web\} search engine, Computer Networks and ISDN
hypertextual \{W
Systems, 1998

Reject fraction of moves!

\square Detailed balance:
$\square K(y \mid x) 1 / 3=K(x \mid y) 2 / 3$
$\square 0.5 * 1 / 3=a * 0.9$ * $2 / 3$
$\square a=0.5$ * $1 / 3 /(0.9$ * $2 / 3)$

$$
=5 / 18
$$

Metropolis-Hastings Algorithm

pick $x^{(0)}$, then iterate over:
propose x^{\prime} from $Q\left(x^{\prime} ; x^{(\dagger)}\right)$
calculate ratio

$$
a=\frac{P^{\star}\left(x^{\prime}\right)}{P^{\star}\left(x^{(t)}\right)} \frac{Q\left(x^{(t)} ; x^{\prime}\right)}{Q\left(x^{\prime} ; x^{(t)}\right)} .
$$

3. if $a>1$ accept $x^{(t+1)}=x^{\prime}$ else accept with probability a if rejected: $x^{(t+1)}=x^{(\dagger)}$

Sampling Posterior

$\square P$ (being onelothers)
\square pulled towards 0 if data close to 0
\square pushed towards 1 if data close to 1
\square and influence of prior...

Relation to Belief Propagation

\square In poly-trees: BP is exact
\square In MRFs: BP is a variational approximation
\square Computation is very similar to Gibbs
\square Difference:
\square BP Can be faster in yielding a good estimate
\square BP exactly calculates the wrong thing
$\square M C$ might take longer to converge
$\square M C$ approximately calculates the right thing

Application: Edge Classification

Given vanishing points of a scene, classify each pixel according to vanishing direction

MAP Edge Classifications

Red: VP1 Green: VP2 Blue: VP3 Gray: Other White: Off

Bayesian Model

$p(M \mid G, V)=p(G \mid M, V) p(M) / Z$
$M=$ classifications,G gradient magnitude/direction, $V=$ vanishing points

Gibbs Sampling \& MRFs

Sample from distribution over labels for one site conditioned on all other sites in its Markov blanket

Gibbs sampling approximates posterior distribution over classifications at each site (by iterating and accumulating statistics)

Take Home Points !

\square Bayesian paradigm is a useful tool to
\square Represent knowledge
\square Perform inference
\square Sampling is a nice way to implement the Bayesian paradigm, e.g. Condensation
\square Markov chain Monte Carlo methods are a nice way to implement sampling

MCMC in high dimensions

$e=s_{\text {min }}$
$L=S_{\text {max }}$
$\mathrm{T}=\left(\mathrm{s}_{\text {max }} / \mathrm{s}_{\text {min }}\right)^{2}$
Good news: no curse in N
bad news: quadratic dependence

