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Sampling Methods for
Bayesian Inference

A Tutorial 

Frank Dellaert

Motivation
How to track many INTERACTING targets ?

Results: MCMC Dancers, q=10, n=500
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Probabilistic Topological Maps Results

Real-Time Urban Reconstruction
•4D Atlanta, only real time, multiple cameras ☺
•Large scale SFM: closing the loop

Current Main Effort: 4D Atlanta

Bayesian paradigm is a useful tool to
Represent knowledge
Perform inference

Sampling is a nice way to implement the 
Bayesian paradigm, e.g. Condensation
Markov chain Monte Carlo methods are a 
nice way to implement sampling

Goals References
Neal, Probabilistic Inference using MCMC 
Methods
Smith & Gelfand, Bayesian Statistics 
Without Tears
MacKay, Introduction to MC Methods
Gilks et al, Introducing MCMC
Gilks et al, MCMC in Practice
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Probability of Robot Location

P(Robot Location)

X

Y

State space = 2D, infinite #states

Density Representation
Gaussian centered around mean x,y
Mixture of Gaussians
Finite element i.e. histogram

Larger spaces -> We have a problem !

Sampling as Representation

P(Robot Location)

X

Y

Sampling Advantages

Arbitrary densities
Memory = O(#samples)
Only in “Typical Set”
Great visualization tool !

minus: Approximate

How to Sample ?
Target Density P(x)
Assumption: we can evaluate P(x) up to an 
arbitrary multiplicative constant

Why can’t we just sample from P(x) ??

How to Sample ?
Numerical Recipes in C, Chapter 7
Transformation method: Gaussians etc…
Rejection sampling
Importance sampling
Markov chain Monte Carlo
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Rejection Sampling

Target Density P
Proposal Density Q

P and Q need only be 
known up to a factor: P* 
and Q*

must exist c such that 
cQ*>=P* for all x

The Good…

9% Rejection Rate

…the Bad…

50% Rejection Rate

…and the Ugly.

70% Rejection Rate

Mean and Variance of a Sample

Mean

Variance (1D)

Monte Carlo Expected Value

α
Expected angle = 30o
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Monte Carlo Estimates (General)
Estimate expectation of any function f:

Bayes Law

Data = Z

Belief before = P(x) Belief after = P(x|Z)

model P(Z|x)

Prior Distribution
of x

Posterior Distribution
of x given Z

Likelihood
of x given Z

P(x|Z) ~ P(Z|x)P(x)

Inference by Rejection Sampling

P(measured_angle|x,y) = N(predicted_angle,3 degrees)

Prior(x,y)
Posterior(x,y|measured_angle=20o)

Importance Sampling
Good Proposal Density would be: prior !
Problem:

No guaranteed c s.t. c P(x)>=P(x|z) for all x

Idea:
sample from P(x)
give each sample x(r) a importance weight equal to 
P(Z|x (r))

Example Importance Sampling

{x(r),y(r)~Prior(x,y), wr=P(Z|x(r),y(r)) }

Importance Sampling (general)

Sample x(r) from Q*
wr = P*(x(r))/Q*(x(r))
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Important Expectations
Any expectation using weighted average:

Particle Filtering

1D Robot Localization

Prior P(X)

Likelihood
L(X;Z)

Posterior
P(X|Z)

Importance Sampling
Histogram approach does not scale
Monte Carlo Approximation
Sample from P(X|Z) by:

sample from prior P(x)
weight each sample x(r) using an importance weight
equal to likelihood L(x (r);Z)

1D Importance Sampling Particle Filter

π(3)π(1)
π(2)

= Recursive Importance Sampling w modeled dynamics 

First appeared in 70’s, re-discovered by Kitagawa, Isard, … 
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3D Particle filter for robot pose:
Monte Carlo Localization

Dellaert, Fox & Thrun ICRA 99

Segmentation Example
Binary Segmentation of image

Probability of a Segmentation
Very high-dimensional
256*256 pixels = 65536 pixels
Dimension of state space N = 65536 !!!!

# binary segmentations = finite ! 
655362 = 4,294,967,296

Representation P(Segmentation)
Histogram ? I don’t think so !
Assume pixels independent

P(x1x2x2...)=P(x1)P(x2)P(x3)...
Markov Random Fields

Pixel is independent given its neighbors
Clearly a problem !
Giveaway: samples !!!

Sampling in
High-dimensional Spaces

Exact schemes ?
If only we were so lucky !

Rejection Sampling
Rejection rate increase with N -> 100%

Importance Sampling
Same problem: vast majority weights -> 0

Markov Chains
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A simple Markov chain

K= [

0.1    0.5    0.6

0.6    0.2    0.3

0.3    0.3    0.1

]

X1

X3 X2

0.6

0.1

0.3

0.2

0.5

0.3

0.3

0.6

0.1

Stationary Distribution

q0
q1 = K q0
q2 = K q1 = K2 q0
q3 = K q2 = K2 q1 = K3 q0

q10 = K q9 = … K10 q0

[1 0 0] [0 1 0] [0 0 1]

The Web as a Markov Chain

www.yahoo.com

Where do we end up if we click hyperlinks randomly ?

Answer: stationary distribution !

Eigen-analysis
K =

0.1000    0.5000    0.6000

0.6000    0.2000    0.3000

0.3000    0.3000    0.1000

E =

0.6396    0.7071   -0.2673

0.6396   -0.7071    0.8018

0.4264    0.0000   -0.5345

D =

1.0000         0         0

0   -0.4000         0

0         0   -0.2000

KE = ED

Eigenvalue v1 always 1

Stationary = e1/sum(e1)
i.e. Kp = p

Eigen-analysise1 e2 e3 q

qn=Kn q0 = E Dn c

= p + c2 v2
n e2 + c3 v3

n e3+…

Google Pagerank

www.yahoo.com

Pagerank == First Eigenvector of the Web Graph !

Computation assumes a 15% “random restart” probability
Sergey Brin and Lawrence Page , The anatomy of a large-scale 
hypertextual {Web} search engine, Computer Networks and ISDN 
Systems, 1998  



9

Markov chain Monte Carlo
Brilliant Idea!

Published June 1953
Top 10 algorithm !

Set up a Markov chain
Run the chain until stationary
All subsequent samples are from stationary 
distribution

Markov chain Monte Carlo
In high-dimensional spaces:

Start at x0~ q0

Propose a move K(xt+1|xt)

K never stored as a big matrix ☺
K as a function/search operator 

Example

How do get the right chain ?
Detailed balance:

K(y|x) p(x) = K(x|y) p(y)

0.5 * 9/14 = 0.9 * 5/14

X4 X5

0.1
0.9

0.5

0.5

Reject fraction of moves !
Detailed balance:

K(y|x) 1/3 = K(x|y) 2/3

0.5 * 1/3 = a * 0.9 * 2/3
a = 0.5 * 1/3 / (0.9 * 2/3)

= 5/18

X4 X5

0.1
0.9

0.5

0.5

X4 X5

0.75
0.25

0.5

0.5
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Metropolis-Hastings Algorithm
- pick x(0), then iterate over:
1. propose x’ from Q(x’;x(t))
2. calculate ratio

3. if a>1 accept x(t+1)=x’ 
else accept with probability a
if rejected: x(t+1)=x(t)

Again !

1. x(0)=10

2. Proposal:
x’=x-1 with Pr 0.5
x’=x+1 with Pr 0.5

3. Calculate a:
a=1 if x’ in [0,20]
a=0 if x’=-1 or x’=21

4. Accept if 1, reject if 0

5. Goto 2

1D Robot 
Localization

Chain started at random
Converges to posterior

Localization Eigenvectors

0.9962

1.0000

Gibbs Sampling
- MCMC method that always accepts
- Algorithm:

- alternate between x1 and x2

- 1. sample from x1 ~ P(x1|x2)
- 2. sample from x2 ~ P(x2|x1)

- Rationale: easy conditional distributions
- = Gauss-Seidel of samplers
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Sampling Segmentations
Prior model: Markov Random Field
Likelihood: 1 or 0 plus Gaussian noise

Gibbs Sampling method of choice
Conditional densities are easy in MRF

Samples from Prior

Forgiving Prior Stricter Prior

Sampling Prior
P(being one|others)=

HIGH if many ones around you
LOW if many zeroes around you

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Posterior
P(being one|others)

pulled towards 0 if data close to 0
pushed towards 1 if data close to 1
and influence of prior...

Samples from Posterior

Forgiving Prior Stricter Prior

Relation to Belief Propagation
In poly-trees: BP is exact
In MRFs: BP is a variational approximation
Computation is very similar to Gibbs
Difference:

BP Can be faster in yielding a good estimate
BP exactly calculates the wrong thing
MC might take longer to converge
MC approximately calculates the right thing
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Relation to Belief Propagation Application: Edge Classification

Given vanishing points of a scene, classify each pixel according to 
vanishing direction

MAP Edge Classifications

Red: VP1 Green: VP2 Blue: VP3 Gray: Other White: Off

Bayesian Model

p(M | G,V) = p(G | M,V) p(M) / Z
M = classifications, G = gradient magnitude/direction, V = vanishing points

Prior: p(m)

Likelihood: p(g | m,V)

Independent Prior MRF Prior

m

g

Classifications w/MRF Prior

Gibbs sampling over 4-neighbor lattice w/ clique 
potentials defined as: A if i=j, B if i <> j

Gibbs Sampling & MRFs

Gibbs sampling approximates posterior 
distribution over classifications at each site 
(by iterating and accumulating statistics)

Sample from distribution over 
labels for one site conditioned on 
all other sites in its Markov blanket
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Directional MRF

Give more weight to potentials of neighbors which 
lie along the vanishing direction of current model

vp

Original Image

Independent Prior MRF Prior

Directional MRF Prior

Bayesian paradigm is a useful tool to
Represent knowledge
Perform inference

Sampling is a nice way to implement the 
Bayesian paradigm, e.g. Condensation
Markov chain Monte Carlo methods are a 
nice way to implement sampling

Take Home Points !
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World Knowledge

P(z|x)

z

x
Sensor Model

Most often analytic expression, can be learned

d

d

Proposal Density Q
- Q(x’;x) that depends on x

Step Size and #Samples
- Too large: all rejected
- Too small: random walk
- E[d]=e sqrt(T)
- Rule of thumb: T>=(L/e)2

- Bummer: just a lower bound

Discussion Example
- e=1
- L=20
- T>=400
- Moral: avoid random walks

MCMC in high dimensions
- e=smin
- L=smax
- T=(smax/smin)2

- Good news: no curse in N
- bad news: quadratic dependence


