Learning and Vision: Discriminative Models

Paul Viola Microsoft Research viola@microsoft.com

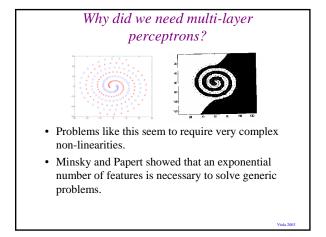
Overview

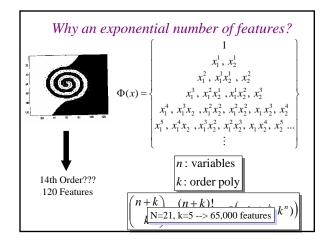
- Perceptrons
- Support Vector Machines – Face and pedestrian detection
- AdaBoost
 - Faces
- Building Fast Classifiers
 - Trading off speed for accuracy...
 - Face and object detection
- Memory Based Learning
 - Simard
 - Moghaddam

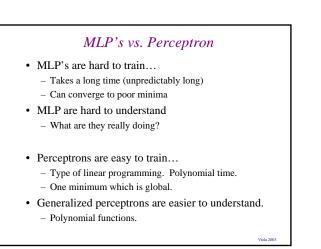
History Lesson

- 1950's Perceptrons are cool
 Very simple learning rule, can learn "complex" concepts
 Generalized perceptrons are better -- too many weights
- 1960's Perceptron's stink (M+P)

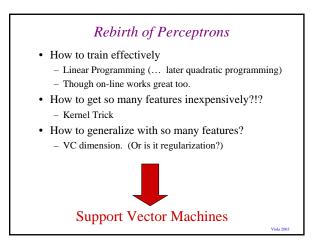
 Some simple concepts require exponential # of features
 Can't possibly learn that, right?
- 1980's MLP's are cool (R+M / PDP)
 Sort of simple learning rule, can learn anything (?)
 Create just the features you need
- 1990 MLP's stink
 Hard to train : Slow / Local Minima
- 1996 Perceptron's are cool







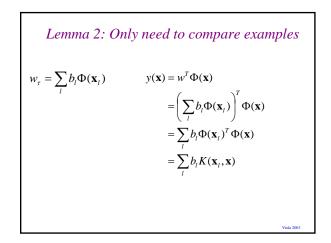
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} y:\{+1,-1\}\\ \mathbf{x}:R^{N}\\ \{(y_{i},\mathbf{x}_{i})\} \end{array} \end{array} \xrightarrow{Perceptron Training is} \\ \begin{array}{c} Linear Programming\\ \forall i: y_{i}\left(w^{T}\mathbf{x}_{i}\right) > 0 \end{array} \\ \hline \\ \begin{array}{c} \forall i: y_{i}\left(w^{T}\mathbf{x}_{i}\right) > 0 \end{array} \end{array}$$
Polynomial time in the number of variables and in the number of constraints.
\\\hline \\ \begin{array}{c} What about linearly inseparable?\\ \forall i: y_{i}\left(w^{T}\mathbf{x}_{i}\right) + s_{i} > 0 & \min \sum_{i} s_{i} \\ s_{i} > 0 & \forall i \end{array}

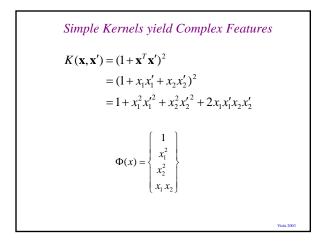


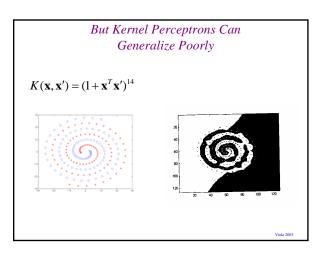
Lemma 1: Weight vectors are simple

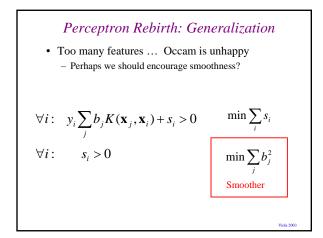
$$w_0 = 0 \qquad \Delta w_\tau = \eta_\tau \mathbf{x}_\tau$$

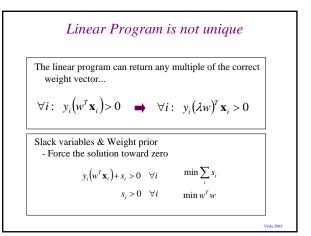
$$w_\tau = \sum_{l < \tau} \eta_l \mathbf{x}_l = \sum_l b_l \mathbf{x}_l \qquad w_\tau = \sum_l b_l \Phi(\mathbf{x}_l)$$
• The weight vector lives in a sub-space spanned by
the examples...
• Dimensionality is determined by the number of
examples not the complexity of the space.

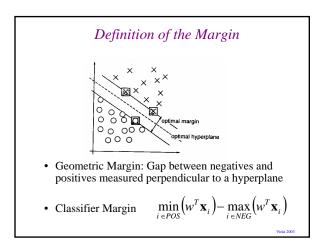




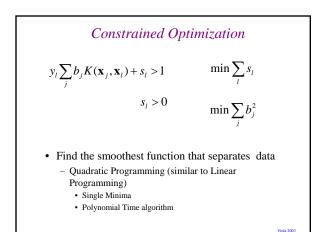


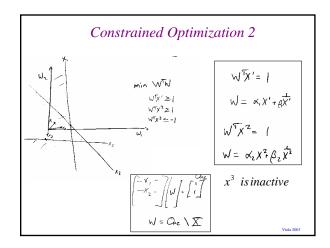


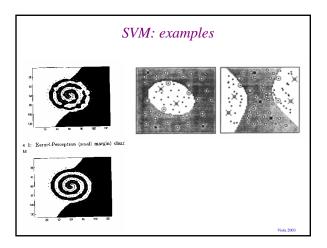




Require	e non-zero margin	
$w^T \mathbf{x}_l + s_l > 0 \forall l$	Allows solutions with zero margin	
$w^T \mathbf{x}_l + s_l > 1 \forall l$	Enforces a non-zero margin between examples and the decision boundary.	
		Viola 2003

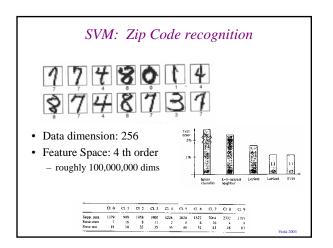


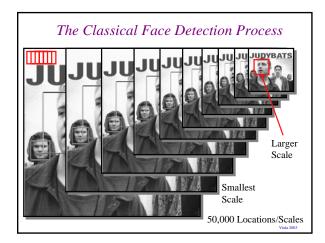


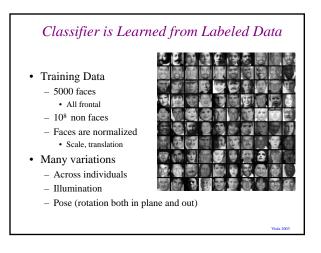


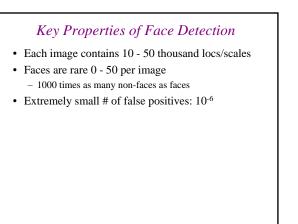
SVM: Key Ideas

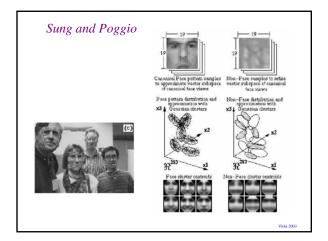
- Augment inputs with a very large feature set - Polynomials, etc.
- Use Kernel Trick(TM) to do this efficiently
- Enforce/Encourage Smoothness with weight penalty
- Introduce Margin
- Find best solution using Quadratic Programming

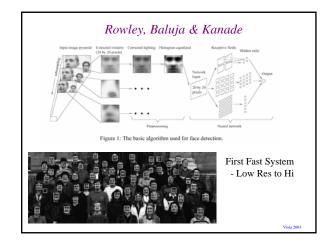


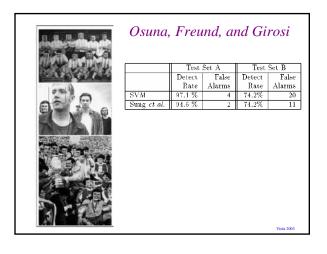


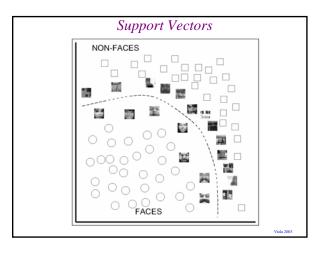


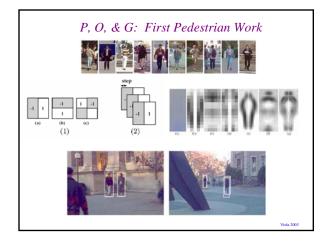


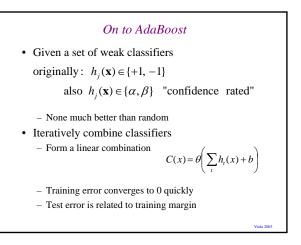


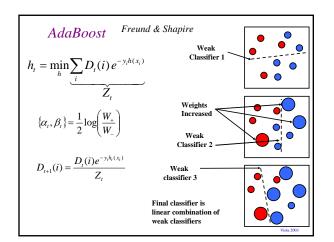


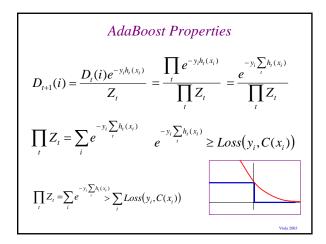






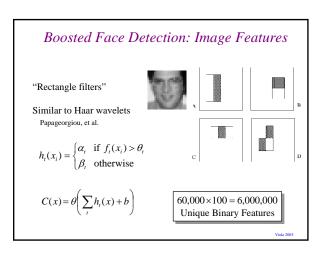


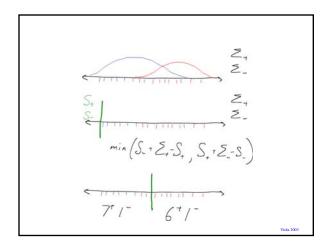


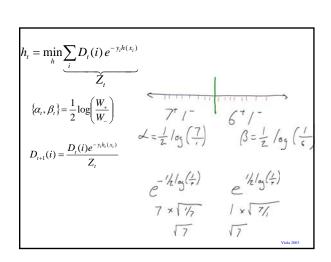


AdaBoost: Super Efficient Feature Selector Features = Weak Classifiers Each round selects the optimal feature given:

- Previous selected features
- Exponential Loss





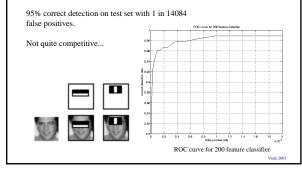


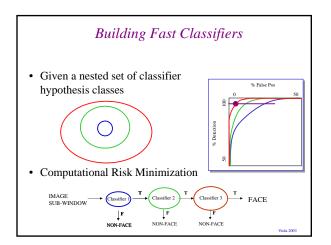
Feature Selection

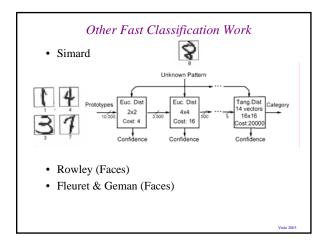
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min Z)
 - Select best filter/threshold (= Feature)
 - Reweight examples
- M filters, T thresholds, N examples, L learning time
 - O(MT L(MTN)) Naïve Wrapper Method
 - O(MN) Adaboost feature selector

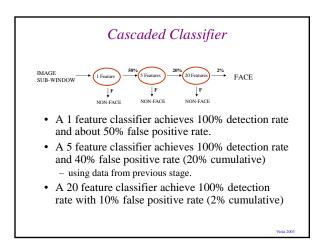
Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

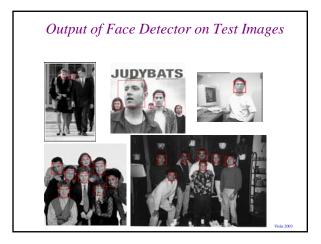








False Detections	10	31	50	65	78	95	110	167	422
Viola-Jones	78.3	85.2	88.8	90.0	90.1	90.8	91.1	91.8	93.7
Rowley-Baluja- Kanade	83.2	86.0				89.2		90.1	89.9
Schneiderman-Kanade				94.4					
Roth-Yang-Ahuja					(94.8)				



Feature Localization

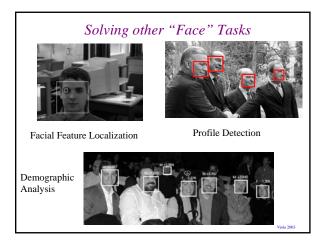
- The cost of detection is not a function of image size

• Conclusion: the "feature" detector can include a large contextual region around the feature

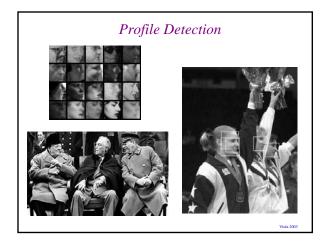
- Learning automatically focuses attention on key regions

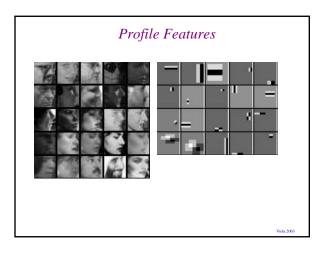
• Surprising properties of our framework

· Just the number of features



Feature Localization Features • Learned features reflect the task ł.





Features, Features, Features							
• In almost every case:							
Good Features beat Go	ood Learning						
Learning beats No	o Learning						
• Critical classifier ratio: <u>quality</u> <u>complexity</u>							
• AdaBoost >> SVM							
	Viola 2003						