
Fast Pose Estimation with
Parameter-Sensitive Hashing

Greg Shakhnarovich~, Paul Viola?, Trevor Darrell~

~ MIT Computer Science and Artificial Intelligence Lab
? Microsoft Research

October 9, 2003

The problem

• The problem: recover articulated pose parameters (joint angles)

from a single monocular image.

• Fitting a model is difficult: ill-posed problem, computationally

extensive iterative process.

1

The problem

• The problem: recover articulated pose parameters (joint angles)

from a single monocular image.

• Fitting a model is difficult: ill-posed problem, computationally

extensive iterative process.

• But: the local relationship is often easy to model

– Locally weighted regression (LWR)

=⇒ Need to find the neighbors (similar examples).

1

Related work

• Much work on tracking, less on estimation from a single frame.

• Usually uses point correspondece, feature detectors etc.

• Example-based methods:

– [Athitsos and Sclaroff, CVPR 2003] shape classification; uses

exact 1-NN search.

– [Mori and Malik, ECCV 2002] “shape context”; uses contour,

feature points.

2

Is it computationally feasible?

• For complex parameter space (e.g. articulated pose), might need

many (105 − 106) examples.

• Feature space is very high-dimensional.

• Exact similarity search algorithms (e.g. kd-trees, SR-trees...) suffer

from “curse of dimensionality”.

3

Is it computationally feasible?

• For complex parameter space (e.g. articulated pose), might need

many (105 − 106) examples.

• Feature space is very high-dimensional.

• Exact similarity search algorithms (e.g. kd-trees, SR-trees...) suffer

from “curse of dimensionality”.

• Randomized algorithms for similarity search to the rescue.

3

Locality-sensitive hashing

r

• r-neighbor

4

Locality-sensitive hashing

r
(1 + ε)r

• r-neighbor

• ε− r-neighbor

4

Locality-sensitive hashing

r
(1 + ε)r

• r-neighbor

• ε− r-neighbor

• LSH [Indyk & Motwani, ’98-00]: solves the ε− r-neighbor problem

in O
(
dn1/(1+ε)

)
(d – dimension, N – number of examples).

4

Locality-sensitive hashing

r
(1 + ε)r

• r-neighbor

• ε− r-neighbor

• LSH [Indyk & Motwani, ’98-00]: solves the ε− r-neighbor problem

in O
(
dn1/(1+ε)

)
(d – dimension, N – number of examples).

– For ε = 1 the running time is O(d
√
N)

– N = 106 : speedup factor of 1000.

4

Locality-sensitive functions

• Use a locality-sensitive family of binary functions h

• Probability of collision (same bit value) for two examples depends

on the distance:

• If d(x,y) < r (good collision) - high probability;

• If d(x,y) > (1 + ε)r (bad collision) low probability.

5

LSH

• Using l indpendent k-bit locality-sensitive hash functions

6

LSH

• Using l indpendent k-bit locality-sensitive hash functions:

6

LSH

• Using l indpendent k-bit locality-sensitive hash functions:

• For each table find examples that

fall into the same bucket with the input.

6

LSH

• Using l indpendent k-bit locality-sensitive hash functions:

• For each table find examples that

fall into the same bucket with the input.

6

LSH

• Using l indpendent k-bit locality-sensitive hash functions:

• For each table find examples that

fall into the same bucket with the input.

• Search the union of these buckets.

6

LSH

• Using l indpendent k-bit locality-sensitive hash functions:

• For each table find examples that

fall into the same bucket with the input.

• Search the union of these buckets.

• With high probability, the union is small and contains good

examples.

6

Similarity in parameter space

• LSH relies on distance in the feature space.

• We want similarity w.r.t. the distance dθ in the parameter values.

• We don’t know which hash functions are sensitive to the parameters.

7

Similarity in parameter space

• LSH relies on distance in the feature space.

• We want similarity w.r.t. the distance dθ in the parameter values.

• We don’t know which hash functions are sensitive to the parameters.

• Instead, we will estimate the performance of the binary hash

functions empirically, and select a locality-sensitive subset with

respect to dθ.

=⇒ Parameter-sensitive hashing.

7

Hashing and classification

• A paired example 〈(xi, θi), (xj, θj)〉 is labeled:

– Positive if dθ(θi, θj) < r;

– Negative if dθ(θi, θj) > (1 + ε)r.

8

Hashing and classification

• A paired example 〈(xi, θi), (xj, θj)〉 is labeled:

– Positive if dθ(θi, θj) < r;

– Negative if dθ(θi, θj) > (1 + ε)r.

• hφ,T applied on a paired examples will either:

θ

φ(X)

T

8

Hashing and classification

• A paired example 〈(xi, θi), (xj, θj)〉 is labeled:

– Positive if dθ(θi, θj) < r;

– Negative if dθ(θi, θj) > (1 + ε)r.

• hφ,T applied on a paired examples will either:

– Place both in the same bin θ

φ(X)

T

8

Hashing and classification

• A paired example 〈(xi, θi), (xj, θj)〉 is labeled:

– Positive if dθ(θi, θj) < r;

– Negative if dθ(θi, θj) > (1 + ε)r.

• hφ,T applied on a paired examples will either:

– Place both in the same bin ,or θ

φ(X)

T

– Separate between them.

8

Hashing and classification

• hφ,T classifies the pair as positive if both components fall in the

same bucket.

– Pr(Bad collision) = false positive rate

– Pr(Good collision) = true positive rate

• Selection mechanism:

– Sample a large paired training set;

– Set target values for false positive and false negative rates;

– Select binary functions that meet the target.

9

Paired examples

POS POS

AND

NEG NEG

10

Representation

• Image features: concatenated multi-scale edge direction histograms

A
B

0 π/4 π/2 3π/4

φ107(x) =
∑
Ax0

φ7033(x) =
∑
Bxπ/4

• Binary functions (axis-parallel decision stumps)

hφ,T (x) =

{
+1 if φ(x) ≥ T,
−1 otherwise

for a feature φ and a threshold T .

11

Pose with PSH

Input image Compute features Find similar examples

Robust LWR

12

Data collection

• Labeled data generated with Poser r©.

• 150,000 images, 200×180 pixels.

• 13 DOF (shoulders, elbows, collar bone, + torso rotation).

• Nuisance parameters: illumination, head and hand pose, facial

expression, clothing.

13

Paired training

• Hash function selection: 1,775,000 paired examples.

• Selected 137 out of 5,123 non-constant features.

– 18-bit hash functions, 150 hash tables.

– Without selection, would need 40 bits, 1000 hash tables.

14

Synthetic test set

• Test on 1,000 synthetic examples, to evaluate different methods.

• “Correct” estimate = mean error in angles less than 15 degrees.

• 1-NN: 33% correct;

• 25-NN: 67%;

• 25-NN, robust linear LWR 70%.

15

Results on real data

• Office environment; simple background subtraction.

• No ground truth - evaluation by “eye-balling”.

• MATLAB implementation: less than 1 sec per query.

• Only 2,000 candidates per query (80 times speedup).

16

Results on real data

• Office environment; simple background subtraction.

• No ground truth - evaluation by “eye-balling”.

• MATLAB implementation: less than 1 sec per query.

• Only 2,000 candidates per query (80 times speedup).

(No real data used in training!)

16

Results on real data

Input 1-NN Robust LWR - 12NN

17

Results on real data

Input 1-NN Robust LWR - 12NN

18

More results

IN
P

U
T

1-
N

N
R

.L
W

R

19

Failures

IN
P

U
T

T
O

P
M

A
T

C
H

R
LW

R

20

Future work

• Apply PSH to other estimation problem in vision where large

amount of labeled data available.

– Age estimation

– Shape inference

– ...

• Integrating temporal information (tracking?)

– Treat estimated neighbors as “particles”?

21

Summary

• Randomized algorithms for similarity search make example-based

methods feasible.

• Parameter-sensitive hashing for estimation.

• Paired classification paradigm for selecting hash functions.

• Articulated pose estimation from single frame using large synthetic

corpus.

22

Questions?..

23

