CSEP505: Programming Languages
Lecture 3. Small-step operational semantics,
semantics via translation, state-passing,
Introduction to lambda-calculus

Dan Grossman
Autumn 2016

Where are we

« Finished our first syntax definition and interpreter
— Was “large-step”
 Now a “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of Homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Syntax (review)

» Recall the abstract syntax for IMP
— Abstract = trees, assume no parsing ambiguities
« Two metalanguages for “what trees are in the language”

type exp = Int of int | Var of string

| Plus of exp * exp | Times of exp * exp
type stmt = Skip | Assign of string * exp

| Seq of stmt * stmt

| If of exp * stmt * stmt

| While of exp * stmt

e ::=C| X | e+ e | e * e
s ::=skip| x:=e | s;s | ife thenselses | whilees
(x in {x1,x2,...,y1,y2,...,21,22,...,...})

(cin{...-2,-1,0,1,2,...})

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 3

Expression semantics (review)

« Definition by interpretation: Program means what an interpreter
written in the metalanguage says it means

type exp = Int of int | Var of string
| Plus of exp * exp | Times of exp * exp
type heap = (string * int) 1list

let rec lookup h str = .. (*lookup a variable%*)

let rec interp e (h:heap) (e:exp) =
match e with
Int i ->1
| Var str ->lookup h str
|Plus (el,e2) ->(interp e h el)+(interp e h e2)
| Times (el,e2) ->(interp e h el) *(interp e h e2)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Statement semantics (review)

* In IMP, expressions produce numbers (given a heap)

* In IMP, statements change heaps, i.e., they produce a heap
(given a heap)

let rec interp s (h:heap) (s:stmt) =
match s with
Skip -> h
|Seq(sl,s2) -> let h2 = interp s h sl in
interp s h2 s2
|If(e,sl,s2) -> if (interp e h e) <> 0
then interp s h sl
else interp s h s2
|Assign(str,e) -> h str (interp e h e)
|While(e,sl) -> (* two slides ahead ¥*)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Heap access (review)

* In IMP, a heap maps strings to values
* Yes, we could use mutation, but that is:
— less powerful (old heaps do not exist)
— less explanatory (interpreter passes current heap)

type heap = (string * int) 1list

let rec lookup h str =
match h with
[] -=> 0 (* kind of a cheat *)
| (s,1)::t1l -> if s=str then i else lookup tl str
let update h str 1 = (str,i)::h

« As a definition, this is great despite terrible waste of space

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 6

Meanwhile, while (review)

* Loops are always the hard part!

let rec interp s (h:heap) (s:stmt) =
match s with

| While(e,sl) -> if (interp e h e) <> 0
then let h2 = interp s h sl in
interp s h2 s
else h

e siSWhile(e,sl)

« Semi-troubling circular definition
— Thats, interp s might not terminate

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 7

Finishing the story

 Have interp e and interp s
A “program” is just a statement
« Aninitial heap is (say) one that maps everything to O

type heap = (string * int) list
let empty heap = []

let interp prog s =
lookup (interp s empty heap s) "“ans”

Fancy words: We have defined a large-step
operational-semantics using OCaml as our metalanguage

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Fancy words

« QOperational semantics
— Definition by interpretation

— Often implies metalanguage is “inference rules”
(a mathematical formalism we’ll learn in a couple weeks)

« Large-step
— Interpreter function “returns an answer” (or doesn’t)
— So definition says nothing about intermediate computation
— Simpler than small-step when that's okay

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Language properties

A semantics Is necessary to prove language properties

« Example: Expression evaluation is total and deterministic

“For all heaps h and expressions e, there is exactly one integer
i suchthat interp e h ereturns i’

— Rarely true for “real” languages
— But often care about subsets for which it is true

« Prove for all expressions by induction on the tree-height of an
expression

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

10

Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
 Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of Homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 11

Small-step

* Now redo our interpreter with small-step
— An expression/statement “becomes a slightly simpler thing”

— A less efficient interpreter, but has advantages as a
definition (discuss after interpreter)

Large-step Small-step
interp e heap->exp->int heap->exp->exp
interp s heap->stmt->heap | heap->stmt->(heap*stmt)

Lecture 3

CSEP505 Autumn 2016 Dan Grossman 12

Example

Switching to concrete syntax, where each — is one call to
interp e and heap maps everything to O

(x+3)+(y*z) - (0+3)+(y*z)
- 3+ (y*z)
— 3+ (0*z)
- 3+ (0*0)
- 340
- 3

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

13

Small-step expressions

“We just take one little step”

exception AlreadyValue

let rec interp e (h:heap) (e:exp)
match e with
Int 1 -> raise AlreadyValue
|Var str -> Int (lookup h str)
| Plus (Int il,Int i2)-> Int (il+i2)
| Plus (Int il1l, e2) -> Plus(Int il,interp e h e2)
| Plus (el, e2) -> Plus(interp e h el,e2)
| Times (Int il,Int i2) -> Int (il1%*i2)
| Times (Int il, e2)-> Times(Int il,interp e h e2)
| Times (el, e2) -> Times (interp e h el,e2)

We chose “left to right”, but not important

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 14

Small-step statements

let rec interp s (h:heap) (s:stmt) =
match s with

Skip -> raise AlreadyValue
|Assign(str,Int 1)-> ((update h str 1i),Skip)
|Assign(str,e) -> (h,Assign(str,interp e h e))
| Seq (Skip,s2) -> (h,s2)

| Seq(sl,s2) -> let (h2,s3) = interp s h sl

in (h2,Seq(s3,s2))
|If(Int i,s1,s82) -> (h, 1f 1 <> O
then sl
else s2)
|If(e,sl,s2) -> (h, If(interp e h e, sl, s2))
|While(e,sl) -> (*?2?272%)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 15

Meanwhile, while

* Loops are always the hard part!

let rec interp s (h:heap) (s:stmt) =
match s with

| While(e,sl) -> (h, If(e,Seq(sl,s),Skip))

* “Aloop takes one step to its unrolling”
e siSWhile(e,sl)

- interp_ s always terminates

- interp prog may not terminate...

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

16

Finishing the story

 Have interp e and interp s
A “program” is just a statement
« Aninitial heap is (say) one that maps everything to O

type heap = (string * int) list
let empty heap = []
let interp prog s =
let rec loop (h,s) =
match s with
Skip -> lookup h “ans”
| -> loop (interp s h s)
in loop (empty heap,s)

Fancy words: We have defined a small-step
operational-semantics using OCaml as our metalanguage

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Small vs. large again

« Small is really inefficient
— Descends and rebuilds AST at every tiny step

« But as a definition, it gives a trace of program states
— A state is a pair heap*stmt
— Can talk about them e.g., “no state has x>17...”

— Infinite loops now produce infinite traces rather than OCam|
just “hanging forever”

« Theorem: Total equivalence: interp prog (large) returns i for
s ifand only if interp prog (small) does

— Proof is pretty tricky

 With the theorem, we can choose whatever semantics is most
convenient for whatever else we want to prove

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 18

Where are we

Definition by interpretation

 We have abstract syntax and two interpreters for
our source language IMP

« Our metalanguage is OCaml|

Now definition by translation
« Abstract syntax and source language still IMP
« Metalanguage still OCaml|

« Target language now “OCaml with just functions strings, Iints,
and conditionals”

— tricky stuff?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

19

In pictures and equations

« |f the target language has a semantics, then:
compiler + targetSemantics = sourceSemantics

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

20

What we're “doing”

 Meta and target can be the same language
— Unusual for a “real” compiler
— Makes example harder to follow ®
* Our target will be a subset of OCaml
— After translation, you could “unload” the AST definition
* (in theory)
— An IMP while loop becomes a function
» Not a piece of data that says “I'm a while loop”

« Shows you can really think of loops, assignments, etc. as
“functions over heaps”

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 21

Goals

* xXlate e:
exp -> ((string->int)->int)

— “given an exp, produce a function that given a function from
strings to ints returns an int”

— (string->int acts like a heap)
— An expression “is” a function from heaps to ints
* xXlate s:
stmt->((string->int) ->(string->int))
— A statement “is” a function from heaps to heaps
* A “heap transformer”

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 22

Expression translation

xlate e: exp -> ((string->int)->int)

let rec xlate e (e:exp) =

match e with

Int i -> (fun h -> 1i)

|Var str -> (fun h -> h str)

|Plus (el,e2) -> let fl = xlate e el in
let £2 = xlate e e2 in
(fun h -> (£f1 h) + (£2 h))

| Times (el,e2) -> let fl = xlate e el in
let £2 = xlate e e2 in
(fun h -> (£f1 h) * (£2 h))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

23

What just happened

(* an example ¥*)

let e = Plus(Int 3, Times (Var “x”, Int 4))

let £ = xlate e e (* compile ¥*)

(* the value bound to f is a function whose body
does not use any IMP abstract syntax! ¥*)

let ans = £ (fun s -> 0) (* run w/ empty heap ¥*)

« Our target sublanguage:
— Functions (including + and *, not interp e)
— Strings and integers
— Variables bound to things in our sublanguage
— (later: if-then-else)

* Note: No lookup until “run-time” (of course)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 24

Wrong

« This produces a program not in our sublanguage:

let rec xlate e (e:exp) =

match e with

Int i -> (fun h -> i)

|Var str -> (fun h -> h str)

|Plus (el,e2) -> (fun h -> (xlate e el h) +
(xlate e e2 h))

| Times (el,e2) -> (fun h -> (xlate e el h) *
(xlate e e2 h))

« OCaml evaluates function bodies when called (like YFL)
« Waits until run-time to translate P1us and Times children!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Statements, part 1

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with
Skip -=> (fun h -> h)
|Assign(str,e) ->
let £ = xlate e e in
(fun h -> let 1 = £ h in
(fun s -> if s=str then i else h s))
| Seq(sl,s2) ->
let £2 = xlate s s2 in (* order irrelevant! ¥*)
let f1 = xlate s sl in
(fun h -> £2 (£f1 h)) (* order relevant *)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 26

Statements, part 2

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with ..
|If(e,sl,s2) ->
let f1 = xlate s sl in
let £2 = xlate s s2 in
let £ = xlate e e 1in
(fun h -> if (£ h) <> 0 then f1 h else £2 h)
|While (e,sl) ->
let f1 = xlate s sl in

let £ = xlate_e e 1in
(*?2?272%)

* Why is translation of while tricky???

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

27

Statements, part 3

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with

|While(e,sl) ->
let £f1 = xlate_ s sl in

let £ = xlate e e 1in

let rec loop h = (* ah, recursion! ¥*)
if £ h<>0
then loop (f1 h)
else h

in loop

« Target language must have some recursion/loop!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

28

Finishing the story

Have xlate e and xlate_s
A “program” is just a statement
An initial heap is (say) one that maps everything to 0

let interp prog s =
((xlate_s s) (fun str -> 0)) “ans”

Fancy words: We have defined a “denotational semantics”
— But target was not math

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

29

Summary

 Three semantics for IMP
— Theorem: they are all equivalent

« Avoided
— Inference rules (for “real” operational semantics)
— Recursive-function theory (for “real” denotational semantics)

» Inference rules useful for reading PL research papers
— So we'll start using them some soon

« |f we assume OCaml already has a semantics, then using it as a
metalanguage and target language makes sense for IMP

* Loops and recursion are deeply connected!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 30

HW?2 Primer

Problem 1.

— Extend IMP with saveheap, restoreheap

— Requires 10-ish changes to our large-step interpreter
— Minor OCaml novelty: mutually recursive types

Problem 2:
— Syntax plus 3 semantics for a little Logo language
— Intellectually transfer ideas from IMP
— A lot of skeleton provided

In total, less code than Homework 1
— But more interesting code

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

31

HW2 Primer cont'd

e ::= home | forward £ | turn £ | for i 1lst
1st ::= [] | e::1lst

« Semantics of a move list is a “places-visited” list
— type: (float*float) list
* Program state = move list, X,y coordinates, and current direction
« Given a list, “do the first thing then the rest”
* As usual, loops are the hardest case

This is all in the assignment
— With Logo description separated out

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 32

Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
« Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of homework 2
 Then a couple useful digressions
— Packet filters and other code-to-data examples
— State-passing style; monadic style
Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 33

Digression: Packet filters

« If you're not a language semanticist, is this useful?

A very simple view of packet filters:

« Some bits come in off the wire

« Some applications want the “packet” and some do not
— e.g., port number

« For safety, only the O/S can access the wire

« For extensiblility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app
that wants (any) packets.

Faster solution: Run app-written filters in kernel-space

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 34

What we need

 Now the O/S writer is defining the packet-filter language!
Properties we wish of (untrusted) filters:

1. Don'’t corrupt kernel data structures

2. Terminate within a reasonable time bound

3. Run fast (the whole point)

Sould we allow arbitrary C code and an unchecked API?

Should we make up a language and “hope” it has these properties?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 35

Language-based approaches

1. Interpret a language
« + clean operational semantics, portable
« - may be slow (or not since specialized), unusual interface

2. Translate (JIT) a language into C/assembly
 + clean denotational semantics, existing optimizers,
« - upfront (pre-1st-packet) cost, unusual interface

3. Require a conservative subset of C/assembly
« + normal interface
* -too conservative without help
« related to type systems (we’ll get there!)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 36

More generally...

Packet filters move the code to data rather than data to code
General reasons: performance, security, other?

Other examples:
— Query languages
— Active networks
— Client-side web scripts

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

37

State-passing

« Translation of IMP produces programs that take/return heaps
— You could do that yourself to get an imperative “feel”
— Stylized use makes this a useful, straightforward idiom

(* functional heap interface written by a guru
to encourage stylized state-passing ¥*)

let empty heap = []

let lookup str heap =

((try List.assoc str heap with _ -> 0), heap)
let update str v heap = ((), (str,v) : :heap)
(* .. could have more operations .. *)

* Each operation:
— Takes a heap (last)
— returns a pair: an “answer” and a (new) heap

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 38

State-passing example

let empty heap = []
let lookup str heap =

((try List.assoc str heap with _ -> 0), heap)
let update str v heap = ((), (str,v) : :heap)

(* increment "z", if original "z" is positive set
"x" to "y" else set "x" to 37 *)
let examplel heap = (* take a heap ¥*)
let x1,heap = lookup "z" heap in
let %2 ,heap = update "z" (x1+1) heap in
let x3,heap = if x1>0
then lookup "y"
else (37,heap) in
update "x" x3 heap (*return () and new heap%*)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 39

From state-passing to monads

« That was good and clearly showed sequence
— But the explicit heap-passing was annoying
— Can we abstract it to get an even more imperative feel?
« Two brilliant functions with “monadic interface” (obscure math)

(* written by a guru
fl: function from heap to result & heap
f2: function from arg & heap to result & heap *)
let bind f1 f2 =
(fun heap ->
let x,heap = f1l heap in
f2 x heap)
(* just return e with unchanged heap ¥*)
let ret e = (fun heap -> (e,heap))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 40

Back to example

let bind f1 £2 =
(fun heap -> let x,heap = fl1 heap in f2 x heap)

let ret e = (fun heap -> (e,heap))

Naively rewriting our example with bind and ret seems awful
— But systematic from examplel

let example2 heap =
(bind (fun heap -> lookup "z" heap)
(fun x1 ->
(bind (fun heap -> update "z" (x1+1l) heap)
(fun x2 ->
(bind (fun heap -> if x1 > 0
then lookup "y" heap
else ret 37 heap)
(fun x3 ->
(fun heap->update "x" x3 heap)))))

hea

LCLLuIc™o COLIrovVO AUWULLITT £UL10 dll \J1uddllidll “41

Clean-up

« Butbind, ret, update, and lookup are written “just right” so
we can remove every explicit mention of a heap

— Allsince (fun h -> el .. en h) isel .. en
— Like in imperative programming!

let example3 =
bind (lookup "z"
(fun x1 ->
bind (update "z" (x1+1))
(fun x2 ->
bind(if x1 > 0
then lookup "y"
else ret 37)
(fun x3 ->
(update "x" x3))))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 42

More clean-up

Now let’s just use “funny” indentation and line-breaks

let exampled =
bind (lookup "z" (fun x1 ->
bind (update "z" (x1+1)) (fun x2 ->
bind (if x1 > 0
then lookup "y"
else ret 37) (fun x3 ->
(update "x" x3))))

This is imperative programming “in Hebrew”
— Within a functional semantics

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

43

Adding sugar

« Haskell (not OCaml) then just has syntactic sugar for this “trick”
- x <- el; e2desugarstobindel (fun x -> e2)
- el; e2desugarstobind el (fun _ -> e2)

(*does not work in OCaml; showing Haskell
sugar via pseudocode¥*)
let example5 =
x1l <- (lookup "z") ;
update "z" (x1+1) ;
x3 <- 1if x1 > 0
then lookup "y"
else ret 37 ;
update "x" x3

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 44

Adding sugar

* F# supports this idea with workflows
— Better branding than monads?? © ©

— Mostly just syntactic sugar (but exceptions and other
corners)

(* F#, do once to define state computation *)
type HeapBuilder () =
member this.Bind(susp, func) = bind susp func
member this.Return(x) = ret x
member this.ReturnFrom(x) = x

let heap monad = new HeapBuilder ()

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

45

Adding sugar

* F# supports this idea with workflows
— Better branding than monads?? © ©

— Mostly just syntactic sugar (but exceptions and other
corners)

(* F#, example using heap monad *)
let example5 =
heap monad {
let! x1 = lookup "z"
let! x2 = update "z" (x1+1)
let! x3 = heap monad ({
if x1 > 0 then lookup "y"
else return 37

}

return! update "x" x3

}

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

46

What we did

We derived and used the state monad

Many imperative features (l/O, exceptions, backtracking, ...) fit into
a functional setting via monads (bind + ret + other operations)

— Essential to Haskell, the modern purely functional language
— “Just” redefine bind and ret

A key topic to return to if/when we spend a week on Haskell!

Relevant tutorial (using Haskell):

Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell

Simon Peyton Jones, MSR Cambridge

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 47

Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
« Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]
— First motivate

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

48

Where are we

To talk about functions more precisely, we need to define them
as carefully as we did IMP’s constructs

First try adding functions & local variables to IMP “on the cheap”
— It won't work

Then back up and define a language with nothing but functions
— And we’ll be able to encode everything else

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 49

Worth a try...

type exp = .. (* no change *)

type stmt = ... | Call of string * exp

(*prog now has a list of named 1l-arg functions¥)
type funs = (string*(string*stmt)) list

type prog = funs * stmt

let rec interp s (fs:funs) (h:heap) (s:stmt) =
match s with

| Call(str,e) ->
let (arg,body) = List.assoc str fs in
(* str(e) becomes arg:=e; body *)
interp s fs h (Seq(Assign(arg,e) body))

« Adefinition yes, but one we want?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 50

The "wrong” definition

» The previous slide makes function call assign to a global variable
— So choice of argument name matters
— And affects caller

« Example (with IMP-like concrete syntax):
[(fun £ x -> y:=x)]

x = 2; £(3); ans := x

 We could try “making up a new variable” every time...

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 51

2nd wrong try

(* return some string not used in h or s ¥*)
let fresh h s = ..

let rec interp s (fs:funs) (h:heap) (s:stmt) =
match s with

| Call(str,e) ->
let (arg,body) = List.assoc str fs in
let y = fresh h s in
(* str(e) becomes y:=arg; arg:=e; body,; arg:=y
where y is "fresh" ¥*)
interp s fs h (Seq(Assign(y,Var arg),
Seqg(Assign (arg,e),
Seq (body,
Assign(arg,Var y)))))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 52

Did that work?

(* str(e) becomes y:=arg; arg:=e; body; arg:=y
where y is "fresh" *)

« “fresh” is pretty sloppy (but okay, it's malloc)
* Not an elegant model of a key PL feature

« Still wrong:

— In functional or OOP: variables in body should be looked up
based on where body came from

— Even in C: If body calls a function that accesses a global
variable named arg

— Examples...

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 53

Examples

Using higher-order functions
[(fun f1 x -> g := fun z -> ans := x + z)]
£f1(2); x:=3; g(4);
— “Should” set ans to 6, but instead we get 7 because of
“‘when/where” we look up x

Using globals and function pointers
[(fun £f1 x -> £f2(y); ans := x) ;
(fun £2 z -> x:=4)]
£1(3);
— “Should” set ans to 3, but instead we get 4 because x is still
fundamentally a global variable

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 54

Let’s give up

Cannot properly model local scope via a global heap of integers
— Functions are not syntactic sugar for assignments to globals
So let’s build a model of this key concept
— Or just borrow one from 1930s logic
And for now, drop mutation, conditionals, and loops
— We won’t need them!
The Lambda calculus in BNF
Expressions: e:=X|Ax.e|ee
Values: Vi =AX. e

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 55

That's all of it!

Expressions: e:=X|Ax.e|ee
Values: Vi =AX. e
A program is an e. To call a function:
substitute the argument for the bound variable
That’s the key operation we were missing

Example substitutions:
(AX. X) (AY.y) 2 Ay.y
(AX. Ay. Yy X) (Az. 2) 2 Ay.y (Az. 2)
(AX. X X) (AX. X X)=2 (AX. X X) (AX. X X)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 56

Why substitution

After substitution, the bound variable is gone
— So clearly its name did not matter
— That was our problem before

Given substitution we can define a little programming language
— (correct & precise definition is subtle; we’ll come back to it)
— This microscopic PL turns out to be Turing-complete

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

57

Full large-step interpreter

= Var of string
| Lam of string¥*exp
| Apply of exp * exp
exception BadExp
let subst el with e2 for x = ..(*to be discussed¥*)
let rec interp large e =
match e with
Var -> raise BadExp (* unbound variable ¥*)

| Lam -> e (* functions are values *)

| Apply(el,e2) ->
let vl = interp large el in
let v2 = interp large e2 in
match vl with
Lam(x,e3) -> interp large (subst e3 v2 x)
| -> failwith "impossible" (* why? *)

type exp

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

Interpreter summarized

 Evaluation produces a value

« Evaluate application (call) by
1. Evaluate left
2. Evaluate right
3. Substitute result of (2) in body of result of (1)
— And evaluate result

A different semantics has a different evaluation strategy:

1. Evaluate left
2. Substitute right in body of result of (1)
— And evaluate result

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

59

Another interpreter

= Var of string
| Lam of string¥*exp
| Apply of exp * exp
exception BadExp
let subst el with e2 for x = ..(*to be discussed¥*)
let rec interp large2 e =
match e with
Var -> raise BadExp (*unbound wvariable%*)

| Lam _ -> e (*functions are values¥*)
| Apply(el,e2) ->
let vl = interp large2 el in
(* we used to evaluate e2 to v2 here ¥*)
match vl with
Lam(x,e3) -> interp large2 (subst e3 e2Z x)

| -> failwith “impossible” (* why? *)

type exp

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

What have we done

Syntax and two large-step semantics for the
untyped lambda calculus

— First was “call by value”
— Second was “call by name”

Real implementations don’t use substitution
— They do something equivalent

Amazing (?) fact:
— If call-by-value terminates, then call-by-name terminates
— (They might both not terminate)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman

61

