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Where are we

« Finished our first syntax definition and interpreter
— Was “large-step”
 Now a “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of Homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman



Syntax (review)

» Recall the abstract syntax for IMP
— Abstract = trees, assume no parsing ambiguities
« Two metalanguages for “what trees are in the language”

type exp = Int of int | Var of string

| Plus of exp * exp | Times of exp * exp
type stmt = Skip | Assign of string * exp

| Seq of stmt * stmt

| If of exp * stmt * stmt

| While of exp * stmt

e ::=C| X | e+ e | e * e
s ::=skip| x:=e | s;s | ife thenselses | whilees
(x in {x1,x2,...,y1,y2,...,21,22,...,...})

(cin{...-2,-1,0,1,2,...})
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Expression semantics (review)

« Definition by interpretation: Program means what an interpreter
written in the metalanguage says it means

type exp = Int of int | Var of string
| Plus of exp * exp | Times of exp * exp
type heap = (string * int) 1list

let rec lookup h str = .. (*lookup a variable%*)

let rec interp e (h:heap) (e:exp) =
match e with
Int i ->1
| Var str ->lookup h str
|Plus (el,e2) ->(interp e h el)+(interp e h e2)
| Times (el,e2) ->(interp e h el) *(interp e h e2)
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Statement semantics (review)

* In IMP, expressions produce numbers (given a heap)

* In IMP, statements change heaps, i.e., they produce a heap
(given a heap)

let rec interp s (h:heap) (s:stmt) =
match s with
Skip -> h
|Seq(sl,s2) -> let h2 = interp s h sl in
interp s h2 s2
|If(e,sl,s2) -> if (interp e h e) <> 0
then interp s h sl
else interp s h s2
|Assign(str,e) -> h str (interp e h e)
|While(e,sl) -> (* two slides ahead ¥*)
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Heap access (review)

* In IMP, a heap maps strings to values
* Yes, we could use mutation, but that is:
— less powerful (old heaps do not exist)
— less explanatory (interpreter passes current heap)

type heap = (string * int) 1list

let rec lookup h str =
match h with
[] -=> 0 (* kind of a cheat *)
| (s,1)::t1l -> if s=str then i else lookup tl str
let update h str 1 = (str,i)::h

« As a definition, this is great despite terrible waste of space
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Meanwhile, while (review)

* Loops are always the hard part!

let rec interp s (h:heap) (s:stmt) =
match s with

| While(e,sl) -> if (interp e h e) <> 0
then let h2 = interp s h sl in
interp s h2 s
else h

e siSWhile(e,sl)

« Semi-troubling circular definition
— Thats, interp s might not terminate
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Finishing the story

 Have interp e and interp s
A “program” is just a statement
« Aninitial heap is (say) one that maps everything to O

type heap = (string * int) list
let empty heap = []

let interp prog s =
lookup (interp s empty heap s) "“ans”

Fancy words: We have defined a large-step
operational-semantics using OCaml as our metalanguage

Lecture 3 CSEP505 Autumn 2016 Dan Grossman



Fancy words

« QOperational semantics
— Definition by interpretation

— Often implies metalanguage is “inference rules”
(a mathematical formalism we’ll learn in a couple weeks)

« Large-step
— Interpreter function “returns an answer” (or doesn’t)
— So definition says nothing about intermediate computation
— Simpler than small-step when that's okay
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Language properties

A semantics Is necessary to prove language properties

« Example: Expression evaluation is total and deterministic

“For all heaps h and expressions e, there is exactly one integer
i suchthat interp e h ereturns i’

— Rarely true for “real” languages
— But often care about subsets for which it is true

« Prove for all expressions by induction on the tree-height of an
expression
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Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
 Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of Homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]
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Small-step

* Now redo our interpreter with small-step
— An expression/statement “becomes a slightly simpler thing”

— A less efficient interpreter, but has advantages as a
definition (discuss after interpreter)

Large-step Small-step
interp e heap->exp->int heap->exp->exp
interp s heap->stmt->heap | heap->stmt->(heap*stmt)

Lecture 3
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Example

Switching to concrete syntax, where each — is one call to
interp e and heap maps everything to O

(x+3)+(y*z) - (0+3)+(y*z)
- 3+ (y*z)
— 3+ (0*z)
- 3+ (0*0)
- 340
- 3
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Small-step expressions

“We just take one little step”

exception AlreadyValue

let rec interp e (h:heap) (e:exp)
match e with
Int 1 -> raise AlreadyValue
|Var str -> Int (lookup h str)
| Plus (Int il,Int i2)-> Int (il+i2)
| Plus (Int il1l, e2) -> Plus(Int il,interp e h e2)
| Plus (el, e2) -> Plus(interp e h el,e2)
| Times (Int il,Int i2) -> Int (il1%*i2)
| Times (Int il, e2)-> Times(Int il,interp e h e2)
| Times (el, e2) -> Times (interp e h el,e2)

We chose “left to right”, but not important
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Small-step statements

let rec interp s (h:heap) (s:stmt) =
match s with

Skip -> raise AlreadyValue
|Assign(str,Int 1)-> ((update h str 1i),Skip)
|Assign(str,e) -> (h,Assign(str,interp e h e))
| Seq (Skip,s2) -> (h,s2)

| Seq(sl,s2) -> let (h2,s3) = interp s h sl

in (h2,Seq(s3,s2))
|If(Int i,s1,s82) -> (h, 1f 1 <> O
then sl
else s2)
|If(e,sl,s2) -> (h, If(interp e h e, sl, s2))
|While(e,sl) -> (*?2?272%)
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Meanwhile, while

* Loops are always the hard part!

let rec interp s (h:heap) (s:stmt) =
match s with

| While(e,sl) -> (h, If(e,Seq(sl,s),Skip))

* “Aloop takes one step to its unrolling”
e siSWhile(e,sl)

- interp_ s always terminates

- interp prog may not terminate...
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Finishing the story

 Have interp e and interp s
A “program” is just a statement
« Aninitial heap is (say) one that maps everything to O

type heap = (string * int) list
let empty heap = []
let interp prog s =
let rec loop (h,s) =
match s with
Skip -> lookup h “ans”
| -> loop (interp s h s)
in loop (empty heap,s)

Fancy words: We have defined a small-step
operational-semantics using OCaml as our metalanguage
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Small vs. large again

« Small is really inefficient
— Descends and rebuilds AST at every tiny step

« But as a definition, it gives a trace of program states
— A state is a pair heap*stmt
— Can talk about them e.g., “no state has x>17...”

— Infinite loops now produce infinite traces rather than OCam|
just “hanging forever”

« Theorem: Total equivalence: interp prog (large) returns i for
s ifand only if interp prog (small) does

— Proof is pretty tricky

 With the theorem, we can choose whatever semantics is most
convenient for whatever else we want to prove
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Where are we

Definition by interpretation

 We have abstract syntax and two interpreters for
our source language IMP

« Our metalanguage is OCaml|

Now definition by translation
« Abstract syntax and source language still IMP
« Metalanguage still OCaml|

« Target language now “OCaml with just functions strings, Iints,
and conditionals”

— tricky stuff?
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In pictures and equations

« |f the target language has a semantics, then:
compiler + targetSemantics = sourceSemantics
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What we're “doing”

 Meta and target can be the same language
— Unusual for a “real” compiler
— Makes example harder to follow ®
* Our target will be a subset of OCaml
— After translation, you could “unload” the AST definition
* (in theory)
— An IMP while loop becomes a function
» Not a piece of data that says “I'm a while loop”

« Shows you can really think of loops, assignments, etc. as
“functions over heaps”
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Goals

* xXlate e:
exp -> ((string->int)->int)

— “given an exp, produce a function that given a function from
strings to ints returns an int”

— (string->int acts like a heap)
— An expression “is” a function from heaps to ints
* xXlate s:
stmt->((string->int) ->(string->int))
— A statement “is” a function from heaps to heaps
* A “heap transformer”
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Expression translation

xlate e: exp -> ((string->int)->int)

let rec xlate e (e:exp) =

match e with

Int i -> (fun h -> 1i)

|Var str -> (fun h -> h str)

|Plus (el,e2) -> let fl = xlate e el in
let £2 = xlate e e2 in
(fun h -> (£f1 h) + (£2 h))

| Times (el,e2) -> let fl = xlate e el in
let £2 = xlate e e2 in
(fun h -> (£f1 h) * (£2 h))
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What just happened

(* an example ¥*)

let e = Plus(Int 3, Times (Var “x”, Int 4))

let £ = xlate e e (* compile ¥*)

(* the value bound to f is a function whose body
does not use any IMP abstract syntax! ¥*)

let ans = £ (fun s -> 0) (* run w/ empty heap ¥*)

« Our target sublanguage:
— Functions (including + and *, not interp e)
— Strings and integers
— Variables bound to things in our sublanguage
— (later: if-then-else)

* Note: No lookup until “run-time” (of course)
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Wrong

« This produces a program not in our sublanguage:

let rec xlate e (e:exp) =

match e with

Int i -> (fun h -> i)

|Var str -> (fun h -> h str)

|Plus (el,e2) -> (fun h -> (xlate e el h) +
(xlate e e2 h))

| Times (el,e2) -> (fun h -> (xlate e el h) *
(xlate e e2 h))

« OCaml evaluates function bodies when called (like YFL)
« Waits until run-time to translate P1us and Times children!
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Statements, part 1

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with
Skip -=> (fun h -> h)
|Assign(str,e) ->
let £ = xlate e e in
(fun h -> let 1 = £ h in
(fun s -> if s=str then i else h s))
| Seq(sl,s2) ->
let £2 = xlate s s2 in (* order irrelevant! ¥*)
let f1 = xlate s sl in
(fun h -> £2 (£f1 h)) (* order relevant *)
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Statements, part 2

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with ..
|If(e,sl,s2) ->
let f1 = xlate s sl in
let £2 = xlate s s2 in
let £ = xlate e e 1in
(fun h -> if (£ h) <> 0 then f1 h else £2 h)
|While (e,sl) ->
let f1 = xlate s sl in

let £ = xlate_e e 1in
(*?2?272%)

* Why is translation of while tricky???
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Statements, part 3

xlate_s:
stmt->((string->int) ->(string->int))

let rec xlate s (s:stmt) =
match s with

|While(e,sl) ->
let £f1 = xlate_ s sl in

let £ = xlate e e 1in

let rec loop h = (* ah, recursion! ¥*)
if £ h<>0
then loop (f1 h)
else h

in loop

« Target language must have some recursion/loop!
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Finishing the story

Have xlate e and xlate_s
A “program” is just a statement
An initial heap is (say) one that maps everything to 0

let interp prog s =
((xlate_s s) (fun str -> 0)) “ans”

Fancy words: We have defined a “denotational semantics”
— But target was not math
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Summary

 Three semantics for IMP
— Theorem: they are all equivalent

« Avoided
— Inference rules (for “real” operational semantics)
— Recursive-function theory (for “real” denotational semantics)

» Inference rules useful for reading PL research papers
— So we'll start using them some soon

« |f we assume OCaml already has a semantics, then using it as a
metalanguage and target language makes sense for IMP

* Loops and recursion are deeply connected!
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HW?2 Primer

Problem 1.

— Extend IMP with saveheap, restoreheap

— Requires 10-ish changes to our large-step interpreter
— Minor OCaml novelty: mutually recursive types

Problem 2:
— Syntax plus 3 semantics for a little Logo language
— Intellectually transfer ideas from IMP
— A lot of skeleton provided

In total, less code than Homework 1
— But more interesting code
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HW2 Primer cont'd

e ::= home | forward £ | turn £ | for i 1lst
1st ::= [] | e::1lst

« Semantics of a move list is a “places-visited” list
— type: (float*float) list
* Program state = move list, X,y coordinates, and current direction
« Given a list, “do the first thing then the rest”
* As usual, loops are the hardest case

This is all in the assignment
— With Logo description separated out
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Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
« Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of homework 2
 Then a couple useful digressions
— Packet filters and other code-to-data examples
— State-passing style; monadic style
Then start on lambda-calculus [if we have time]
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Digression: Packet filters

« If you're not a language semanticist, is this useful?

A very simple view of packet filters:

« Some bits come in off the wire

« Some applications want the “packet” and some do not
— e.g., port number

« For safety, only the O/S can access the wire

« For extensiblility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app
that wants (any) packets.

Faster solution: Run app-written filters in kernel-space

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 34



What we need

 Now the O/S writer is defining the packet-filter language!
Properties we wish of (untrusted) filters:

1. Don'’t corrupt kernel data structures

2. Terminate within a reasonable time bound

3. Run fast (the whole point)

Sould we allow arbitrary C code and an unchecked API?

Should we make up a language and “hope” it has these properties?
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Language-based approaches

1. Interpret a language
« + clean operational semantics, portable
« - may be slow (or not since specialized), unusual interface

2. Translate (JIT) a language into C/assembly
 + clean denotational semantics, existing optimizers,
« - upfront (pre-1st-packet) cost, unusual interface

3. Require a conservative subset of C/assembly
« + normal interface
* -too conservative without help
« related to type systems (we’ll get there!)
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More generally...

Packet filters move the code to data rather than data to code
General reasons: performance, security, other?

Other examples:
— Query languages
— Active networks
— Client-side web scripts
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State-passing

« Translation of IMP produces programs that take/return heaps
— You could do that yourself to get an imperative “feel”
— Stylized use makes this a useful, straightforward idiom

(* functional heap interface written by a guru
to encourage stylized state-passing ¥*)

let empty heap = []

let lookup str heap =

((try List.assoc str heap with _ -> 0), heap)
let update str v heap = ((), (str,v) : :heap)
(* .. could have more operations .. *)

* Each operation:
— Takes a heap (last)
— returns a pair: an “answer” and a (new) heap
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State-passing example

let empty heap = []
let lookup str heap =

((try List.assoc str heap with _ -> 0), heap)
let update str v heap = ((), (str,v) : :heap)

(* increment "z", if original "z" is positive set
"x" to "y" else set "x" to 37 *)
let examplel heap = (* take a heap ¥*)
let x1,heap = lookup "z" heap in
let %2 ,heap = update "z" (x1+1) heap in
let x3,heap = if x1>0
then lookup "y"
else (37,heap) in
update "x" x3 heap (*return () and new heap%*)
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From state-passing to monads

« That was good and clearly showed sequence
— But the explicit heap-passing was annoying
— Can we abstract it to get an even more imperative feel?
« Two brilliant functions with “monadic interface” (obscure math)

(* written by a guru
fl: function from heap to result & heap
f2: function from arg & heap to result & heap *)
let bind f1 f2 =
(fun heap ->
let x,heap = f1l heap in
f2 x heap)
(* just return e with unchanged heap ¥*)
let ret e = (fun heap -> (e,heap))
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Back to example

let bind f1 £2 =
(fun heap -> let x,heap = fl1 heap in f2 x heap)

let ret e = (fun heap -> (e,heap))

Naively rewriting our example with bind and ret seems awful
— But systematic from examplel

let example2 heap =
(bind (fun heap -> lookup "z" heap)
(fun x1 ->
(bind (fun heap -> update "z" (x1+1l) heap)
(fun x2 ->
(bind (fun heap -> if x1 > 0
then lookup "y" heap
else ret 37 heap)
(fun x3 ->
(fun heap->update "x" x3 heap)))))

hea
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Clean-up

« Butbind, ret, update, and lookup are written “just right” so
we can remove every explicit mention of a heap

— Allsince (fun h -> el .. en h) isel .. en
— Like in imperative programming!

let example3 =
bind (lookup "z"
(fun x1 ->
bind (update "z" (x1+1))
(fun x2 ->
bind(if x1 > 0
then lookup "y"
else ret 37)
(fun x3 ->
(update "x" x3))))
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More clean-up

Now let’s just use “funny” indentation and line-breaks

let exampled =
bind (lookup "z" (fun x1 ->
bind (update "z" (x1+1)) (fun x2 ->
bind (if x1 > 0
then lookup "y"
else ret 37) (fun x3 ->
(update "x" x3))))

This is imperative programming “in Hebrew”
— Within a functional semantics
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Adding sugar

« Haskell (not OCaml) then just has syntactic sugar for this “trick”
- x <- el; e2desugarstobindel (fun x -> e2)
- el; e2desugarstobind el (fun _ -> e2)

(*does not work in OCaml; showing Haskell
sugar via pseudocode¥*)
let example5 =
x1l <- (lookup "z") ;
update "z" (x1+1) ;
x3 <- 1if x1 > 0
then lookup "y"
else ret 37 ;
update "x" x3
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Adding sugar

* F# supports this idea with workflows
— Better branding than monads?? © ©

— Mostly just syntactic sugar (but exceptions and other
corners)

(* F#, do once to define state computation *)
type HeapBuilder () =
member this.Bind(susp, func) = bind susp func
member this.Return(x) = ret x
member this.ReturnFrom(x) = x

let heap monad = new HeapBuilder ()
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Adding sugar

* F# supports this idea with workflows
— Better branding than monads?? © ©

— Mostly just syntactic sugar (but exceptions and other
corners)

(* F#, example using heap monad *)
let example5 =
heap monad {
let! x1 = lookup "z"
let! x2 = update "z" (x1+1)
let! x3 = heap monad ({
if x1 > 0 then lookup "y"
else return 37

}

return! update "x" x3

}
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What we did

We derived and used the state monad

Many imperative features (l/O, exceptions, backtracking, ...) fit into
a functional setting via monads (bind + ret + other operations)

— Essential to Haskell, the modern purely functional language
— “Just” redefine bind and ret

A key topic to return to if/when we spend a week on Haskell!

Relevant tutorial (using Haskell):

Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell

Simon Peyton Jones, MSR Cambridge
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Where are we

« Finished our first syntax definition and interpreter
— Will quickly review
« Then a second “small-step” interpreter for same language
— Equivalent results, complementary as a definition
 Then a third equivalent semantics via translation
— Trickier, but worth seeing
* Then quick overview of homework 2
 Then a couple useful digressions
« Then start on lambda-calculus [if we have time]
— First motivate
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Where are we

To talk about functions more precisely, we need to define them
as carefully as we did IMP’s constructs

First try adding functions & local variables to IMP “on the cheap”
— It won't work

Then back up and define a language with nothing but functions
— And we’ll be able to encode everything else
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Worth a try...

type exp = .. (* no change *)

type stmt = ... | Call of string * exp

(*prog now has a list of named 1l-arg functions¥)
type funs = (string*(string*stmt)) list

type prog = funs * stmt

let rec interp s (fs:funs) (h:heap) (s:stmt) =
match s with

| Call(str,e) ->
let (arg,body) = List.assoc str fs in
(* str(e) becomes arg:=e; body *)
interp s fs h (Seq(Assign(arg,e)  body))

« Adefinition yes, but one we want?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 50



The "wrong” definition

» The previous slide makes function call assign to a global variable
— So choice of argument name matters
— And affects caller

« Example (with IMP-like concrete syntax):
[ (fun £ x -> y:=x) ]

x = 2; £(3); ans := x

 We could try “making up a new variable” every time...
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2nd wrong try

(* return some string not used in h or s ¥*)
let fresh h s = ..

let rec interp s (fs:funs) (h:heap) (s:stmt) =
match s with

| Call(str,e) ->
let (arg,body) = List.assoc str fs in
let y = fresh h s in
(* str(e) becomes y:=arg; arg:=e; body,; arg:=y
where y is "fresh" ¥*)
interp s fs h (Seq(Assign(y,Var arg),
Seqg(Assign (arg,e),
Seq (body,
Assign(arg,Var y)))))
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Did that work?

(* str(e) becomes y:=arg; arg:=e; body; arg:=y
where y is "fresh" *)

« “fresh” is pretty sloppy (but okay, it's malloc)
* Not an elegant model of a key PL feature

« Still wrong:

— In functional or OOP: variables in body should be looked up
based on where body came from

— Even in C: If body calls a function that accesses a global
variable named arg

— Examples...
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Examples

Using higher-order functions
[ (fun f1 x -> g := fun z -> ans := x + z) ]
£f1(2); x:=3; g(4);
— “Should” set ans to 6, but instead we get 7 because of
“‘when/where” we look up x

Using globals and function pointers
[ (fun £f1 x -> £f2(y); ans := x) ;
(fun £2 z -> x:=4) ]
£1(3);
— “Should” set ans to 3, but instead we get 4 because x is still
fundamentally a global variable
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Let’s give up

Cannot properly model local scope via a global heap of integers
— Functions are not syntactic sugar for assignments to globals
So let’s build a model of this key concept
— Or just borrow one from 1930s logic
And for now, drop mutation, conditionals, and loops
— We won’t need them!
The Lambda calculus in BNF
Expressions: e:=X|Ax.e|ee
Values: Vi =AX. e
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That's all of it!

Expressions: e:=X|Ax.e|ee
Values: Vi =AX. e
A program is an e. To call a function:
substitute the argument for the bound variable
That’s the key operation we were missing

Example substitutions:
(AX. X) (AY.y) 2 Ay.y
(AX. Ay. Yy X) (Az. 2) 2 Ay.y (Az. 2)
(AX. X X) (AX. X X)=2 (AX. X X) (AX. X X)
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Why substitution

After substitution, the bound variable is gone
— So clearly its name did not matter
— That was our problem before

Given substitution we can define a little programming language
— (correct & precise definition is subtle; we’ll come back to it)
— This microscopic PL turns out to be Turing-complete
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Full large-step interpreter

= Var of string
| Lam of string¥*exp
| Apply of exp * exp
exception BadExp
let subst el with e2 for x = ..(*to be discussed¥*)
let rec interp large e =
match e with
Var -> raise BadExp (* unbound variable ¥*)

| Lam -> e (* functions are values *)

| Apply(el,e2) ->
let vl = interp large el in
let v2 = interp large e2 in
match vl with
Lam(x,e3) -> interp large (subst e3 v2 x)
| -> failwith "impossible" (* why? *)

type exp
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Interpreter summarized

 Evaluation produces a value

« Evaluate application (call) by
1. Evaluate left
2. Evaluate right
3. Substitute result of (2) in body of result of (1)
— And evaluate result

A different semantics has a different evaluation strategy:

1. Evaluate left
2. Substitute right in body of result of (1)
— And evaluate result
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Another interpreter

= Var of string
| Lam of string¥*exp
| Apply of exp * exp
exception BadExp
let subst el with e2 for x = ..(*to be discussed¥*)
let rec interp large2 e =
match e with
Var -> raise BadExp (*unbound wvariable%*)

| Lam _ -> e (*functions are values¥*)
| Apply(el,e2) ->
let vl = interp large2 el in
(* we used to evaluate e2 to v2 here ¥*)
match vl with
Lam(x,e3) -> interp large2 (subst e3 e2Z x)

| -> failwith “impossible” (* why? *)

type exp
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What have we done

Syntax and two large-step semantics for the
untyped lambda calculus

— First was “call by value”
— Second was “call by name”

Real implementations don’t use substitution
— They do something equivalent

Amazing (?) fact:
— If call-by-value terminates, then call-by-name terminates
— (They might both not terminate)
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