
CSEP505: Programming Languages

Lecture 3: Small-step operational semantics,

semantics via translation, state-passing,

introduction to lambda-calculus

Dan Grossman

Autumn 2016

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 2

Where are we

• Finished our first syntax definition and interpreter

– Was “large-step”

• Now a “small-step” interpreter for same language

– Equivalent results, complementary as a definition

• Then a third equivalent semantics via translation

– Trickier, but worth seeing

• Then quick overview of Homework 2

• Then a couple useful digressions

• Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 3

Syntax (review)

• Recall the abstract syntax for IMP

– Abstract = trees, assume no parsing ambiguities

• Two metalanguages for “what trees are in the language”

type exp = Int of int | Var of string

 | Plus of exp * exp | Times of exp * exp

type stmt = Skip | Assign of string * exp

 | Seq of stmt * stmt

 | If of exp * stmt * stmt

 | While of exp * stmt

e ::= c | x | e + e | e * e

s ::= skip | x := e | s;s | if e then s else s | while e s

(x in {x1,x2,…,y1,y2,…,z1,z2,…,…})

(c in {…,-2,-1,0,1,2,…})

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 4

Expression semantics (review)

• Definition by interpretation: Program means what an interpreter

written in the metalanguage says it means

type exp = Int of int | Var of string

 | Plus of exp * exp | Times of exp * exp

type heap = (string * int) list

let rec lookup h str = … (*lookup a variable*)

let rec interp_e (h:heap) (e:exp) =

 match e with

 Int i ->i

 |Var str ->lookup h str

 |Plus(e1,e2) ->(interp_e h e1)+(interp_e h e2)

 |Times(e1,e2)->(interp_e h e1)*(interp_e h e2)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 5

Statement semantics (review)

• In IMP, expressions produce numbers (given a heap)

• In IMP, statements change heaps, i.e., they produce a heap

(given a heap)

let rec interp_s (h:heap) (s:stmt) =

 match s with

 Skip -> h

 |Seq(s1,s2) -> let h2 = interp_s h s1 in

 interp_s h2 s2

 |If(e,s1,s2) -> if (interp_e h e) <> 0

 then interp_s h s1

 else interp_s h s2

 |Assign(str,e) -> update h str (interp_e h e)

 |While(e,s1) -> (* two slides ahead *)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 6

Heap access (review)

• In IMP, a heap maps strings to values

• Yes, we could use mutation, but that is:

– less powerful (old heaps do not exist)

– less explanatory (interpreter passes current heap)

type heap = (string * int) list

let rec lookup h str =

 match h with

 [] -> 0 (* kind of a cheat *)

 |(s,i)::tl -> if s=str then i else lookup tl str

let update h str i = (str,i)::h

• As a definition, this is great despite terrible waste of space

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 7

Meanwhile, while (review)

• Loops are always the hard part!

let rec interp_s (h:heap) (s:stmt) =

 match s with

 …

 | While(e,s1) -> if (interp_e h e) <> 0

 then let h2 = interp_s h s1 in

 interp_s h2 s

 else h

• s is While(e,s1)

• Semi-troubling circular definition

– That is, interp_s might not terminate

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 8

Finishing the story

• Have interp_e and interp_s

• A “program” is just a statement

• An initial heap is (say) one that maps everything to 0

type heap = (string * int) list

let empty_heap = []

let interp_prog s =

 lookup (interp_s empty_heap s) “ans”

Fancy words: We have defined a large-step

operational-semantics using OCaml as our metalanguage

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 9

Fancy words

• Operational semantics

– Definition by interpretation

– Often implies metalanguage is “inference rules”

 (a mathematical formalism we’ll learn in a couple weeks)

• Large-step

– Interpreter function “returns an answer” (or doesn’t)

– So definition says nothing about intermediate computation

– Simpler than small-step when that’s okay

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 10

Language properties

• A semantics is necessary to prove language properties

• Example: Expression evaluation is total and deterministic

 “For all heaps h and expressions e, there is exactly one integer

i such that interp_e h e returns i”

– Rarely true for “real” languages

– But often care about subsets for which it is true

• Prove for all expressions by induction on the tree-height of an

expression

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 11

Where are we

• Finished our first syntax definition and interpreter

– Will quickly review

• Then a second “small-step” interpreter for same language

– Equivalent results, complementary as a definition

• Then a third equivalent semantics via translation

– Trickier, but worth seeing

• Then quick overview of Homework 2

• Then a couple useful digressions

• Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 12

Small-step

• Now redo our interpreter with small-step

– An expression/statement “becomes a slightly simpler thing”

– A less efficient interpreter, but has advantages as a

definition (discuss after interpreter)

Large-step Small-step

interp_e heap->exp->int heap->exp->exp

interp_s heap->stmt->heap heap->stmt->(heap*stmt)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 13

Example

Switching to concrete syntax, where each → is one call to
interp_e and heap maps everything to 0

(x+3)+(y*z) → (0+3)+(y*z)

 → 3+(y*z)

 → 3+(0*z)

 → 3+(0*0)

 → 3+0

 → 3

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 14

Small-step expressions

exception AlreadyValue

let rec interp_e (h:heap) (e:exp) =

 match e with

 Int i -> raise AlreadyValue

 |Var str -> Int (lookup h str)

 |Plus(Int i1,Int i2)-> Int (i1+i2)

 |Plus(Int i1, e2) -> Plus(Int i1,interp_e h e2)

 |Plus(e1, e2) -> Plus(interp_e h e1,e2)

 |Times(Int i1,Int i2) -> Int (i1*i2)

 |Times(Int i1, e2)-> Times(Int i1,interp_e h e2)

 |Times(e1, e2) -> Times(interp_e h e1,e2)

“We just take one little step”

We chose “left to right”, but not important

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 15

Small-step statements

let rec interp_s (h:heap) (s:stmt) =

 match s with

 Skip -> raise AlreadyValue

 |Assign(str,Int i)-> ((update h str i),Skip)

 |Assign(str,e) -> (h,Assign(str,interp_e h e))

 |Seq(Skip,s2) -> (h,s2)

 |Seq(s1,s2) -> let (h2,s3) = interp_s h s1

 in (h2,Seq(s3,s2))

 |If(Int i,s1,s2) -> (h, if i <> 0

 then s1

 else s2)

 |If(e,s1,s2) -> (h, If(interp_e h e, s1, s2))

 |While(e,s1) -> (*???*)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 16

Meanwhile, while

• Loops are always the hard part!

let rec interp_s (h:heap) (s:stmt) =

 match s with

 …

 | While(e,s1) -> (h, If(e,Seq(s1,s),Skip))

• “A loop takes one step to its unrolling”

• s is While(e,s1)

• interp_s always terminates

• interp_prog may not terminate…

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 17

Finishing the story

• Have interp_e and interp_s

• A “program” is just a statement

• An initial heap is (say) one that maps everything to 0

type heap = (string * int) list

let empty_heap = []

let interp_prog s =

 let rec loop (h,s) =

 match s with

 Skip -> lookup h “ans”

 | _ -> loop (interp_s h s)

 in loop (empty_heap,s)

Fancy words: We have defined a small-step

operational-semantics using OCaml as our metalanguage

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 18

Small vs. large again

• Small is really inefficient

– Descends and rebuilds AST at every tiny step

• But as a definition, it gives a trace of program states

– A state is a pair heap*stmt

– Can talk about them e.g., “no state has x>17…”

– Infinite loops now produce infinite traces rather than OCaml

just “hanging forever”

• Theorem: Total equivalence: interp_prog (large) returns i for

s if and only if interp_prog (small) does

– Proof is pretty tricky

• With the theorem, we can choose whatever semantics is most

convenient for whatever else we want to prove

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 19

Where are we

Definition by interpretation

• We have abstract syntax and two interpreters for

 our source language IMP

• Our metalanguage is OCaml

Now definition by translation

• Abstract syntax and source language still IMP

• Metalanguage still OCaml

• Target language now “OCaml with just functions strings, ints,

and conditionals”

– tricky stuff?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 20

In pictures and equations

Compiler

(in metalang)

Source

program
Target

program

• If the target language has a semantics, then:

compiler + targetSemantics = sourceSemantics

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 21

What we’re “doing”

• Meta and target can be the same language

– Unusual for a “real” compiler

– Makes example harder to follow

• Our target will be a subset of OCaml

– After translation, you could “unload” the AST definition

• (in theory)

– An IMP while loop becomes a function

• Not a piece of data that says “I’m a while loop”

• Shows you can really think of loops, assignments, etc. as

“functions over heaps”

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 22

Goals

• xlate_e:

exp -> ((string->int)->int)

– “given an exp, produce a function that given a function from

strings to ints returns an int”

– (string->int acts like a heap)

– An expression “is” a function from heaps to ints

• xlate_s:

 stmt->((string->int)->(string->int))

– A statement “is” a function from heaps to heaps

• A “heap transformer”

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 23

Expression translation

let rec xlate_e (e:exp) =

 match e with

 Int i -> (fun h -> i)

 |Var str -> (fun h -> h str)

 |Plus(e1,e2) -> let f1 = xlate_e e1 in

 let f2 = xlate_e e2 in

 (fun h -> (f1 h) + (f2 h))

 |Times(e1,e2) -> let f1 = xlate_e e1 in

 let f2 = xlate_e e2 in

 (fun h -> (f1 h) * (f2 h))

xlate_e: exp -> ((string->int)->int)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 24

What just happened

(* an example *)

let e = Plus(Int 3, Times(Var “x”, Int 4))

let f = xlate_e e (* compile *)

(* the value bound to f is a function whose body

does not use any IMP abstract syntax! *)

let ans = f (fun s -> 0)(* run w/ empty heap *)

• Our target sublanguage:

– Functions (including + and *, not interp_e)

– Strings and integers

– Variables bound to things in our sublanguage

– (later: if-then-else)

• Note: No lookup until “run-time” (of course)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 25

Wrong

• This produces a program not in our sublanguage:

let rec xlate_e (e:exp) =

 match e with

 Int i -> (fun h -> i)

 |Var str -> (fun h -> h str)

 |Plus(e1,e2) -> (fun h -> (xlate_e e1 h) +

 (xlate_e e2 h))

 |Times(e1,e2) -> (fun h -> (xlate_e e1 h) *

 (xlate_e e2 h))

• OCaml evaluates function bodies when called (like YFL)

• Waits until run-time to translate Plus and Times children!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 26

Statements, part 1

xlate_s:

stmt->((string->int)->(string->int))

let rec xlate_s (s:stmt) =

 match s with

 Skip -> (fun h -> h)

 |Assign(str,e) ->

 let f = xlate_e e in

 (fun h -> let i = f h in

 (fun s -> if s=str then i else h s))

 |Seq(s1,s2) ->

 let f2 = xlate_s s2 in (* order irrelevant! *)

 let f1 = xlate_s s1 in

 (fun h -> f2 (f1 h)) (* order relevant *)

 | …

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 27

Statements, part 2
xlate_s:

stmt->((string->int)->(string->int))

let rec xlate_s (s:stmt) =

 match s with …

 |If(e,s1,s2) ->

 let f1 = xlate_s s1 in

 let f2 = xlate_s s2 in

 let f = xlate_e e in

 (fun h -> if (f h) <> 0 then f1 h else f2 h)

 |While(e,s1) ->

 let f1 = xlate_s s1 in

 let f = xlate_e e in

 (*???*)

• Why is translation of while tricky???

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 28

Statements, part 3

xlate_s:

stmt->((string->int)->(string->int))

let rec xlate_s (s:stmt) =

 match s with

 …

 |While(e,s1) ->

 let f1 = xlate_s s1 in

 let f = xlate_e e in

 let rec loop h = (* ah, recursion! *)

 if f h <> 0

 then loop (f1 h)

 else h

 in loop

• Target language must have some recursion/loop!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 29

Finishing the story

• Have xlate_e and xlate_s

• A “program” is just a statement

• An initial heap is (say) one that maps everything to 0

let interp_prog s =

 ((xlate_s s) (fun str -> 0)) “ans”

Fancy words: We have defined a “denotational semantics”

– But target was not math

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 30

Summary

• Three semantics for IMP

– Theorem: they are all equivalent

• Avoided

– Inference rules (for “real” operational semantics)

– Recursive-function theory (for “real” denotational semantics)

• Inference rules useful for reading PL research papers

– So we’ll start using them some soon

• If we assume OCaml already has a semantics, then using it as a
metalanguage and target language makes sense for IMP

• Loops and recursion are deeply connected!

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 31

HW2 Primer

• Problem 1:

– Extend IMP with saveheap, restoreheap

– Requires 10-ish changes to our large-step interpreter

– Minor OCaml novelty: mutually recursive types

• Problem 2:

– Syntax plus 3 semantics for a little Logo language

– Intellectually transfer ideas from IMP

– A lot of skeleton provided

• In total, less code than Homework 1

– But more interesting code

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 32

HW2 Primer cont’d

 e ::= home | forward f | turn f | for i lst

 lst ::= [] | e::lst

• Semantics of a move list is a “places-visited” list

– type: (float*float) list

• Program state = move list, x,y coordinates, and current direction

• Given a list, “do the first thing then the rest”

• As usual, loops are the hardest case

This is all in the assignment

– With Logo description separated out

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 33

Where are we

• Finished our first syntax definition and interpreter

– Will quickly review

• Then a second “small-step” interpreter for same language

– Equivalent results, complementary as a definition

• Then a third equivalent semantics via translation

– Trickier, but worth seeing

• Then quick overview of homework 2

• Then a couple useful digressions

– Packet filters and other code-to-data examples

– State-passing style; monadic style

• Then start on lambda-calculus [if we have time]

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 34

Digression: Packet filters

• If you’re not a language semanticist, is this useful?

A very simple view of packet filters:

• Some bits come in off the wire

• Some applications want the “packet” and some do not

– e.g., port number

• For safety, only the O/S can access the wire

• For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app

that wants (any) packets.

Faster solution: Run app-written filters in kernel-space

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 35

What we need

• Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures

2. Terminate within a reasonable time bound

3. Run fast (the whole point)

Sould we allow arbitrary C code and an unchecked API?

Should we make up a language and “hope” it has these properties?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 36

Language-based approaches

1. Interpret a language

• + clean operational semantics, portable

• - may be slow (or not since specialized), unusual interface

2. Translate (JIT) a language into C/assembly

• + clean denotational semantics, existing optimizers,

• - upfront (pre-1st-packet) cost, unusual interface

3. Require a conservative subset of C/assembly

• + normal interface

• - too conservative without help

• related to type systems (we’ll get there!)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 37

More generally…

Packet filters move the code to data rather than data to code

• General reasons: performance, security, other?

• Other examples:

– Query languages

– Active networks

– Client-side web scripts

– …

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 38

State-passing

• Translation of IMP produces programs that take/return heaps

– You could do that yourself to get an imperative “feel”

– Stylized use makes this a useful, straightforward idiom

(* functional heap interface written by a guru

 to encourage stylized state-passing *)

let empty_heap = []

let lookup str heap =

 ((try List.assoc str heap with _ -> 0), heap)

let update str v heap = ((),(str,v)::heap)

(* … could have more operations … *)

 • Each operation:

– Takes a heap (last)

– returns a pair: an “answer” and a (new) heap

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 39

State-passing example

(* increment "z", if original "z" is positive set

"x" to "y" else set "x" to 37 *)

let example1 heap = (* take a heap *)

 let x1,heap = lookup "z" heap in

 let x2,heap = update "z" (x1+1) heap in

 let x3,heap = if x1>0

 then lookup "y"

 else (37,heap) in

 update "x" x3 heap (*return () and new heap*)

let empty_heap = []

let lookup str heap =

 ((try List.assoc str heap with _ -> 0), heap)

let update str v heap = ((),(str,v)::heap)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 40

From state-passing to monads

• That was good and clearly showed sequence

– But the explicit heap-passing was annoying

– Can we abstract it to get an even more imperative feel?

• Two brilliant functions with “monadic interface” (obscure math)

(* written by a guru

 f1: function from heap to result & heap

 f2: function from arg & heap to result & heap *)

let bind f1 f2 =

 (fun heap ->

 let x,heap = f1 heap in

 f2 x heap)

(* just return e with unchanged heap *)

let ret e = (fun heap -> (e,heap))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 41

Back to example

Naively rewriting our example with bind and ret seems awful

– But systematic from example1

let bind f1 f2 =

 (fun heap -> let x,heap = f1 heap in f2 x heap)

let ret e = (fun heap -> (e,heap))

let example2 heap =

 (bind (fun heap -> lookup "z" heap)

 (fun x1 ->

 (bind(fun heap -> update "z" (x1+1) heap)

 (fun x2 ->

 (bind(fun heap -> if x1 > 0

 then lookup "y" heap

 else ret 37 heap)

 (fun x3 ->

 (fun heap->update "x" x3 heap)))))

 heap

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 42

Clean-up

• But bind, ret, update, and lookup are written “just right” so

we can remove every explicit mention of a heap

– All since (fun h -> e1 … en h) is e1 … en

– Like in imperative programming!

let example3 =

 bind (lookup "z")

 (fun x1 ->

 bind(update "z" (x1+1))

 (fun x2 ->

 bind(if x1 > 0

 then lookup "y"

 else ret 37)

 (fun x3 ->

 (update "x" x3))))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 43

More clean-up

• Now let’s just use “funny” indentation and line-breaks

let example4 =

 bind (lookup "z") (fun x1 ->

 bind (update "z" (x1+1)) (fun x2 ->

 bind (if x1 > 0

 then lookup "y"

 else ret 37) (fun x3 ->

 (update "x" x3))))

• This is imperative programming “in Hebrew”

– Within a functional semantics

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 44

Adding sugar

• Haskell (not OCaml) then just has syntactic sugar for this “trick”

– x <- e1; e2 desugars to bind e1 (fun x -> e2)

– e1; e2 desugars to bind e1 (fun _ -> e2)

(*does not work in OCaml; showing Haskell

sugar via pseudocode*)

let example5 =

 x1 <- (lookup "z") ;

 update "z" (x1+1) ;

 x3 <- if x1 > 0

 then lookup "y"

 else ret 37 ;

 update "x" x3

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 45

Adding sugar

• F# supports this idea with workflows

– Better branding than monads??

– Mostly just syntactic sugar (but exceptions and other

corners)

(* F#, do once to define state computation *)

type HeapBuilder () =

 member this.Bind(susp, func) = bind susp func

 member this.Return(x) = ret x

 member this.ReturnFrom(x) = x

let heap_monad = new HeapBuilder()

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 46

Adding sugar

• F# supports this idea with workflows

– Better branding than monads??

– Mostly just syntactic sugar (but exceptions and other

corners)

 (* F#, example using heap_monad *)

let example5 =

 heap_monad {

 let! x1 = lookup "z"

 let! x2 = update "z" (x1+1)

 let! x3 = heap_monad {

 if x1 > 0 then lookup "y"

 else return 37

 }

 return! update "x" x3

}

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 47

What we did

We derived and used the state monad

Many imperative features (I/O, exceptions, backtracking, …) fit into
a functional setting via monads (bind + ret + other operations)

– Essential to Haskell, the modern purely functional language

– “Just” redefine bind and ret

A key topic to return to if/when we spend a week on Haskell!

Relevant tutorial (using Haskell):

 Tackling the awkward squad: monadic input/output,

concurrency, exceptions, and foreign-language calls in Haskell

 Simon Peyton Jones, MSR Cambridge

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 48

Where are we

• Finished our first syntax definition and interpreter

– Will quickly review

• Then a second “small-step” interpreter for same language

– Equivalent results, complementary as a definition

• Then a third equivalent semantics via translation

– Trickier, but worth seeing

• Then quick overview of homework 2

• Then a couple useful digressions

• Then start on lambda-calculus [if we have time]

– First motivate

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 49

Where are we

• To talk about functions more precisely, we need to define them

as carefully as we did IMP’s constructs

• First try adding functions & local variables to IMP “on the cheap”

– It won’t work

• Then back up and define a language with nothing but functions

– And we’ll be able to encode everything else

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 50

Worth a try…

type exp = … (* no change *)

type stmt = … | Call of string * exp

(*prog now has a list of named 1-arg functions*)

type funs = (string*(string*stmt)) list

type prog = funs * stmt

let rec interp_s (fs:funs) (h:heap) (s:stmt) =

 match s with

 …

 | Call(str,e) ->

 let (arg,body) = List.assoc str fs in

 (* str(e) becomes arg:=e; body *)

 interp_s fs h (Seq(Assign(arg,e),body))

• A definition yes, but one we want?

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 51

The “wrong” definition

• The previous slide makes function call assign to a global variable

– So choice of argument name matters

– And affects caller

• Example (with IMP-like concrete syntax):

 [(fun f x -> y:=x)]

x := 2; f(3); ans := x

• We could try “making up a new variable” every time…

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 52

2nd wrong try

(* return some string not used in h or s *)

let fresh h s = …

let rec interp_s (fs:funs) (h:heap) (s:stmt) =

 match s with

 …

 | Call(str,e) ->

 let (arg,body) = List.assoc str fs in

 let y = fresh h s in

 (* str(e) becomes y:=arg; arg:=e; body; arg:=y

 where y is "fresh" *)

 interp_s fs h (Seq(Assign(y,Var arg),

 Seq(Assign(arg,e),

 Seq(body,

 Assign(arg,Var y)))))

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 53

Did that work?

• “fresh” is pretty sloppy (but okay, it’s malloc)

• Not an elegant model of a key PL feature

• Still wrong:

– In functional or OOP: variables in body should be looked up

based on where body came from

– Even in C: If body calls a function that accesses a global

variable named arg

– Examples…

(* str(e) becomes y:=arg; arg:=e; body; arg:=y

 where y is "fresh" *)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 54

Examples

• Using higher-order functions

 [(fun f1 x -> g := fun z -> ans := x + z)]

 f1(2); x:=3; g(4);

– “Should” set ans to 6, but instead we get 7 because of

“when/where” we look up x

• Using globals and function pointers

 [(fun f1 x -> f2(y); ans := x) ;

 (fun f2 z -> x:=4)]

 f1(3);

– “Should” set ans to 3, but instead we get 4 because x is still

fundamentally a global variable

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 55

Let’s give up

• Cannot properly model local scope via a global heap of integers

– Functions are not syntactic sugar for assignments to globals

• So let’s build a model of this key concept

– Or just borrow one from 1930s logic

• And for now, drop mutation, conditionals, and loops

– We won’t need them!

• The Lambda calculus in BNF

 Expressions: e ::= x | λx. e | e e

 Values: v ::= λx. e

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 56

That’s all of it!

 Expressions: e ::= x | λx. e | e e

 Values: v ::= λx. e

A program is an e. To call a function:

 substitute the argument for the bound variable

That’s the key operation we were missing

Example substitutions:

 (λx. x) (λy. y) λy. y

(λx. λy. y x) (λz. z) λy. y (λz. z)

(λx. x x) (λx. x x) (λx. x x) (λx. x x)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 57

Why substitution

• After substitution, the bound variable is gone

– So clearly its name did not matter

– That was our problem before

• Given substitution we can define a little programming language

– (correct & precise definition is subtle; we’ll come back to it)

– This microscopic PL turns out to be Turing-complete

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 58

Full large-step interpreter

type exp = Var of string

 | Lam of string*exp

 | Apply of exp * exp

exception BadExp

let subst e1_with e2_for x = …(*to be discussed*)

let rec interp_large e =

 match e with

 Var _ -> raise BadExp(* unbound variable *)

 | Lam _ -> e (* functions are values *)

 | Apply(e1,e2) ->

 let v1 = interp_large e1 in

 let v2 = interp_large e2 in

 match v1 with

 Lam(x,e3) -> interp_large (subst e3 v2 x)

 | _ -> failwith "impossible" (* why? *)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 59

Interpreter summarized

• Evaluation produces a value

• Evaluate application (call) by

1. Evaluate left

2. Evaluate right

3. Substitute result of (2) in body of result of (1)

– And evaluate result

A different semantics has a different evaluation strategy:

1. Evaluate left

2. Substitute right in body of result of (1)

– And evaluate result

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 60

Another interpreter

type exp = Var of string

 | Lam of string*exp

 | Apply of exp * exp

exception BadExp

let subst e1_with e2_for x = …(*to be discussed*)

let rec interp_large2 e =

 match e with

 Var _ -> raise BadExp(*unbound variable*)

 | Lam _ -> e (*functions are values*)

 | Apply(e1,e2) ->

 let v1 = interp_large2 e1 in

 (* we used to evaluate e2 to v2 here *)

 match v1 with

 Lam(x,e3) -> interp_large2 (subst e3 e2 x)

 | _ -> failwith “impossible” (* why? *)

Lecture 3 CSEP505 Autumn 2016 Dan Grossman 61

What have we done

• Syntax and two large-step semantics for the

untyped lambda calculus

– First was “call by value”

– Second was “call by name”

• Real implementations don’t use substitution

– They do something equivalent

• Amazing (?) fact:

– If call-by-value terminates, then call-by-name terminates

– (They might both not terminate)

