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Remember our symbol-pile 

 Expressions:   e ::= x | λx. e | e e 

  Values:   v ::= λx. e 

 

                                      e1  λx. e3   e2  v2   e3{v2/x}  v 

–––––––––––– [lam]    –––––––––––––––––––––––––––––  [app] 

  λx. e   λx. e                               e1 e2  v 

 

e  v 
  

e3{v2/x}  is the “capture-avoiding substitution of v2 for x in e3” 

• Capture is an insidious error in program rewriters 

• Formally avoided via “systematic renaming (alpha conversion)” 

– Ensure free variables in v2 are not binders in e3 



Lecture 5 CSE P505 Autumn 2016  Dan Grossman 3 

Untyped Lambda Calculus 

• Go back to math metalanguage 

– Notes on concrete syntax (relates to OCaml) 

– Define semantics with inference rules 

• Lambda encodings (show our language is mighty) 

• Define substitution precisely 

– And revisit function equivalences 

• Environments  

 

Now: 

• Small-step 

• Play with continuations (“very fancy” language feature) 

 

Then: On to types 
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Small-step CBV 

• Left-to-right small-step judgment 

    e1 →  e1’                e2 →  e2’ 

––––––––––––       ––––––––––––       ––––––––––––– 

e1 e2 →  e1’ e2       v e2 →  v e2’       (λx.e) v → e{v/x}                 

• Need an “outer loop” as usual:  

– * means “0 or more steps” 

– Don’t usually bother writing rules, but they’re easy: 

                           e1 →  e2       e2 →*  e3 

––––––––––      –––––––––––––––––––– 

     e →*  e                  e1 →*  e3 

 

e →  e’ 

 

e →*  e’ 
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In OCaml 

type exp =  

  V of string | L of string*exp | A of exp * exp 

let subst e1_with e2_for s = … 
 

let rec interp_one e = 

  match e with 

   V _ -> failwith "interp_one"(*unbound var*) 

 | L _ -> failwith "interp_one" (*already done*) 

 | A(L(s1,e1),L(s2,e2)) -> subst e1 (L(s2,e2)) s1 

 | A(L(s1,e1),e2) -> A(L(s1,e1),interp_one e2) 

 | A(e1,e2) -> A(interp_one e1, e2) 
 

let rec interp_small e = 

  match e with 

   V _ -> failwith "interp_small" (*unbound var*) 

 | L _ -> e 

 | A(e1,e2) -> interp_small (interp_one e) 
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Unrealistic, but… 

• For all e and v,  

  e  v if and only if e →* v 

 

• Small-step distinguishes infinite-loops from stuck programs 

 

• It’s closer to a contextual semantics that can define continuations 

– We’ll stick to OCaml for this 

– And we’ll do it much less efficiently than is possible 

• For the curious: read about Landin’s SECD machine 

[1960!] 
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Rethinking small-step 

• An e is a tree of calls, with variables or lambdas at the leaves 

 

• Find the next function call (or other “primitive step”) to do 

• Do it 

• Repeat (“new” next primitive step could be various places) 

 

• Let’s move the first step out and produce a data structure 
describing where the next “primitive step” occurs 

– Called an evaluation context 

– Think call stack 
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Compute the context 

(* represent "where" the next step "is" *) 

type ectxt = Hole  

           | ALeft of ectxt * exp  

           | ARight of exp * ectxt (*exp a value*) 
 

let rec split e = (*return ctxt & what’s in it*) 

  match e with 

   A(L(s1,e1),L(s2,e2)) -> (Hole,e) 

 | A(L(s1,e1),e2) -> let (ctx2,e3) = split e2 in 

                     (ARight(L(s1,e1),ctx2), e3) 

 | A(e1,e2)       -> let (ctx1,e3) = split e1 in 

                     (ALeft(ctx1,e2), e3) 

 | _ -> raise BadArgument 
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Fill a context 

type ectxt = Hole  

           | ALeft of ectxt * exp  

           | ARight of exp * ectxt (*exp a value*) 

 

let rec fill ctx e = (* plug the hole *) 

  match ctx with 

   Hole            -> e 

 | ALeft(ctx2,e2)  -> A(fill ctx2 e, e2) 

 | ARight(e2,ctx2) -> A(e2, fill ctx2 e) 

• We can also take a context and fill its hole with an expression to 

make a new program (expression) 
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So what? 

• Haven’t done much yet:  

– e = (let ctxt,e2 = split e in fill ctxt e2) 

• But we can rewrite interp_small with them 

– A step has three parts: split, substitute, fill 

let rec interp_small e = 

  match e with 

   V _ -> failwith "interp_small"(*unbound var*) 

 | L _ -> e 

 | A _ -> 

    match split e with 

    (ctx, A(L(s3,e3),v)) -> 

       interp_small(fill ctx (subst e3 v s3)) 

   | _ -> failwith "bad split" 
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Again, so what? 

• Well, now we “have our hands” on a context 

– Could save and restore them  

– (like Homework 2 with heaps, but this “is” the call stack) 

– It’s easy given this semantics! 

 

• Sufficient for: 

– Exceptions 

– Cooperative threads / coroutines 

– “Time travel” with stacks 

– setjmp/longjmp 

 

• Also (not shown): No need to resplit each time – “keep track” 
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Language w/ continuations 

• New expression: Letcc gets current context (“grab the stack”) 

• Now 2 kinds of values, but use application to use both 

– Could instead have 2 kinds of application + errors 

• New kind stores a context (that can be restored) 

type exp =  

   V of string  

 | L of string*exp  

 | A of exp * exp 

  | Letcc of string * exp (* new *) 

 | Cont  of ectxt        (* new *) 
 

and ectxt = Hole (* no change *) 

          | ALeft of ectxt * exp  

          | ARight of exp * ectxt 
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Split with Letcc 

• Old: All values were some L(s,e) 

• New: Values can also be Cont c 

 

• Old: active expression (thing in the hole) always some 

   A(L(s1,e1),L(s2,e2)) 

• New: active expression (thing in the hole) can be: 

– A(v1,v2) 

– Letcc(s,e) 

 

• So split looks quite different to implement these changes 

– Not really that different 

• fill does not change at all 
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Split with Letcc 

let isValue e =  

  match e with  

     L _ -> true | Cont _ -> true | _ -> false 
 

let rec split e =  

  match e with 

   Letcc(s1,e1) -> (Hole,e) (* new *) 

 | A(e1,e2) ->  

   if isValue e1 && isValue e2  

   then (Hole,e) 

   else if isValue e1  

   then let (ctx2,e3) = split e2 in  

        (ARight(e1,ctx2),e3) 

   else let (ctx1,e3) = split e1 in 

        (ALeft(ctx1,e2), e3) 

 | _ -> failwith "bad args to split" 
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All the action 

• Letcc creates a Cont that “grabs the current context” 

• A where body is a Cont “ignores current context” 

let rec interp_small e = 

  match e with 

   V _ -> failwith "interp_small" (*unbound var*) 

 | L _ -> e 

 | _ -> match split e with 

    (ctx, A(L(s3,e3), v)) -> 

       interp_small(fill ctx (subst e3 v s3)) 

   |(ctx, Letcc(s3,e3)) ->  

       interp_small(fill ctx  

           (*woah!!!*) (subst e3 (Cont ctx) s3)) 

   |(ctx, A(Cont ctx2, v)) ->   

       interp_small(fill ctx2 v) (*woah!!!*) 

   | _ -> failwith "bad split" 



Toy Examples 

[In language with addition too and explicit “throw”] 

 

1 + (letcc k. 2 + 3) →*  6 

 

1 + (letcc k. 2 + (throw k 3)) →*  4 

 

1 + (letcc k. (throw k (2+3))) →*  6 

 

1 + (letcc k. (throw k (throw k (throw k 2))) →* 3 

 

Also note evaluation-order matters, even without mutation (!) 

letcc k. (throw k 1) + (throw k 2) 
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Example Uses 

• Continuations for exceptions is “easy” 

– Letcc(x,e) for try, Apply(Var x, v) for raise v in e 

• Coroutines can yield to each other  

– Pass around a yield function that takes an argument  

•  “how to restart me” 

– Body of yield applies the “old how to restart me” passing the 

“new how to restart me” 

• Can generalize to cooperative thread-scheduling 

• With mutation can really do strange stuff 

– The “goto of functional programming” 

– Example of “time travel” to “old stack”… 



“Time Travel” 

OCaml doesn’t have first-class continuations, but if it did: 
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let valOf x = match x with None   -> failwith "" 

                         | Some y -> y  

let x = ref true (*avoids infinite loop*) 
 

let g = ref None 
 

let y = ref (1 + 2 + (letcc k -> (g := Some k); 3)) 
  

let z = if !x 

        then (x := false;  

              throw (valOf (!g)) 7;  

              42)    

        else !y 

  

(* what is z bound to and why? *) 
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A lower-level view 

• If you’re confused, think call-stacks 

– What if YFL had these operations: 

• Store current stack in x (cf. Letcc) 

• Replace current stack with stack in x 

– Need to “fill the stack’s hole” with something different and/or 
when state is different or you’ll have an infinite loop 
 

• Implementing (e.g., compiling) Letcc 

– You do not actually split/fill at each step 

– Cannot just do setjmp/longjmp because a continuation can 
get returned from a function and used later! 

– Can actually copy stacks (expensive) 

– Or can avoid stacks (put stack-frames in heap) 

• Just share and rely on garbage collection 

– Or… 



The CPS-Transform 

There’s a subset of lambda-calculus called “continuation-passing 

style” (CPS).  It’s amazing: 
 

– Every call is [essentially] a tail-call 

– It can do everything full lambda-calculus can 

– In fact, one can automatically translate full lambda-calculus 

into CPS 

• CPS(e) (λx.x) evaluates to 42 if and only if e does 

• Different translations fix different evaluation orders 

– The translation is a powerful compiler technique 

– And it motivates/explains a powerful programming idiom 

– And it makes letcc and throw O(1) operations 

– And it’s mind-bending…  
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CPS transformation 

A CPS transformation is a metafunction from expressions to 

expressions 

 

– Intuition: never return; always call the continuation you’re 

given as an argument 

 

– An int expression becomes an  

(int -> answer_type) -> answer_type 

 

– Example: CPS(73) = (λk. k 73) 

 

– Convert entire program this way and then “main” is some 
(λk.e) that you can call with (λx.x) 
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Without further ado [but slowly ] 

A call-by-value CPS transformation for this source language 
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 Expressions:   e ::= x | λx. e | e e | c | e + e 

  Values:   v ::= λx. e | c 

  CPS(c) =  λk. k c  

 CPS(x) =  λk. k x  (any k != x) 

 CPS(λx.e) =  λx. CPS(e)  

            or λx. λk. CPS(e) k        (any k not in FV(e)) 

 CPS(e1 + e2) = λk. CPS(e1)                 (any k,x1 not in FV(e1+e2)) 

                   (λx1. CPS(e2) 

                         (λx2. k (x1 + x2))) 

CPS(e1 e2) = λk. CPS(e1)                             (any k,f not in FV(e1 e2)) 

                 λf. CPS(e2) 

                      λx. f x k          (why not k (f x)?) 



Everything is a tail-call 

• For all e, CPS(e) is in this sublanguage and stays in it during 

evaluation: 

       e ::= a | a a | a a a | a (a + a) 

       a ::= x | λx. e | c 

 

• An interpreter for the target of CPS doesn’t need a call-stack 

because every call is a tail-call 

 

• Essentially, the program itself is encoding the conceptual call-
stack in nested continuations (lambdas bound to k variables) 
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Programming this way 

• Even if your compiler doesn’t use the CPS transform, you can 

program directly (“manually”) in CPS (a “style” or “idiom”) 

– So you are manually using only tail-calls by using “clever” 

(but mechanical) lambdas for continuations 

– Moves “deep recursion” from the stack to the heap 

 

• See examples in cps_examples.ml 
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Back to first-class continuations 

• Next “amazing” thing: If we add (back) letcc and throw: 

– CPS(e) works fine  

– It “compiles away” letcc and throw to constant-time 

operations (!!) 

– “The continuations” are just lambdas bound to variables 

 

• See next slide… 
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CPS transformation for continuations 

• Old news: 

CPS(c)           =  λk. k c  

CPS(x)           =  λk. k x  (any k != x) 

CPS(λx.e)    =  λx. CPS(e)  or λx. λk. CPS(e) k 

CPS(e1 e2) = λk. CPS(e1)  (λf. CPS(e2) (λx. f x k)) 

 

• Now: 

 

CPS(letcc my_k. e)    =  λmy_k. CPS(e) my_k 

 

CPS(throw e1 e2) = λk. CPS(e1) CPS(e2)    (doesn’t use k!!) 

(easier to understand but verbose:  

         λk. CPS(e1)  (λf. CPS(e2) (λx. f x)) ) 
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Really small examples 

The rule: 

CPS(letcc my_k. e)    =  λmy_k. CPS(e) my_k 

 

Example #1: 

    CPS(letcc my_k. 42)    =   

λmy_k. (λk. k 42) my_k 

      

Example #2:            

    CPS(letcc my_k. my_k)  =  

λmy_k. (λk. k my_k) my_k 
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Back to programming 

• You can use this idea in “manual” CPS too 

 

• See OCaml example for “fast-escape from recursion”  

– Same idea for exceptions 

• And a compiler using CPS can implement exceptions this 

way 

– Time travel works too [not shown] 
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Another “real-world” use 

• A great way to think about some of web programming 

– Each step in a web session is an evaluation context 

      send(page1); 

    receive(form_input); 

    if … then send(page2); … send(page3); … 

– But want to program in “direct style” and have the different 

steps be automatically “checkpointed” 

• To support the back button and session saving 

• Compile program into something using continuations 

• Then encode continuation in a URL or some other hack 
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Where are we 

Finished major parts of the course 

• Functional programming 

• IMP, loops, modeling mutation 

• Lambda-calculus, modeling functions 

• Formal semantics 

• Contexts, continuations 
 

 A mix of super-careful definitions for things you know and using 
our great care to describe more novel things (state monad, 
continuations) 

 

Major new topic: Types! 

– Continue using lambda-calculus as our model 

– But no need to understand continuations for rest of lecture 
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Types Intro 

Naïve thought: More powerful PL is better 

• Be Turing Complete 

• Have really flexible things (lambda, continuations, …) 

• Have conveniences to keep programs short 

 

By this metric, types are a step backward 

– Whole point is to allow fewer programs 

– A “filter” between parse and compile/interp 

– Why a great idea? 
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Why types 

1. Catch “stupid mistakes” early 

• 3 + "hello" 

• print_string "hi" ^ "mom" 

• But may be too early (code not used, …) 
 

2. “Safety”: Prevent getting stuck / going haywire 

• Know evaluation cannot ever get to the point where the 

next step “makes no sense” 

• Alternative: language makes everything make sense 

• Example: ClassCastException 

• Example: MethodNotFoundException 

• Example: 3 + "hi" becomes "3hi" or 0 

• Alternative: language can do whatever ?! 
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Digression/sermon 

Unsafe languages have operations where under some situations 
the implementation “can do anything” 

 

IMP with unsafe C arrays has this rule (any H2;s2!): 

 

Abstraction, modularity, encapsulation are impossible because one 
bad line can have arbitrary global effect 

An engineering disaster (cf. civil engineering) 

H;e1  {v1,…,vn}         H;e2  i          i > n 

––––––––––––––––––––––––––––––––––––– 

               H; e1[i]=e2  H2;s2 
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Why types, continued 

3. Enforce a strong interface (via an abstract type) 

• Clients can’t break invariants 

• Clients can’t assume an implementation 

• Requires safety 
 

4. Allow faster implementations 

• Smaller interfaces enable optimizations 

• Don’t have to check for impossible cases 

• Orthogonal to safety 
 

5. Static overloading (e.g., with +) 

• Not super interesting 

• Late-binding very interesting (come back to this?) 
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Why types, continued 

6. Novel uses 

• A powerful way to think about many conservative program 

analyses/restrictions 

• Examples: race-conditions, manual memory management, 

security leaks, … 

• Deep similarities among different analyses suggests types 

are a good way to think about and define what you’re 

checking 

 

We’ll focus on safety and strong interfaces 

• And later discuss the “static types or not” debate  

 (it’s really a continuum) 
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Our plan 

• Simply-typed lambda-calculus 

• Safety = (preservation + progress) 

• Extensions (pairs, datatypes, recursion, etc.) 

• Digression: static vs. dynamic typing 

• Digression: Curry-Howard Isomorphism 

• Subtyping 

• Type Variables:  

– Generics (), Abstract types ()  

• Type inference (maybe) 
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Adding integers 

Adding integers to the lambda-calculus: 

Expressions:    e ::= x | λx. e | e e | c 

 Values:    v ::= λx. e | c 

 

Could add + and other primitives or just parameterize “programs” by 

them: λplus. λminus. … e  

– Like Pervasives in OCaml 

– A great idea for keeping language definitions small 
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Stuck 

• Key issue: can a program e “get stuck” (small-step): 

– e →* e1  

– e1 is not a value 

– There is no e2 such that e1 → e2 

• “What is stuck” depends on the semantics: 

    e1 →  e1’                e2 →  e2’ 

––––––––––––       ––––––––––––       ––––––––––––– 

e1 e2 →  e1’ e2       v e2 →  v e2 ’       (λx.e) v → e{v/x}                 
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STLC Stuck 

 

• S ::= c v | x v | (λx.e) y | S e | (λx.e) S 

 

• It’s unusual to define these explicitly, but good for understanding 

 

• Most people don’t realize “safety” depends on the semantics:  

– We can add “cheat” rules to “avoid” being stuck 

 

• With e1 + e2, would also be stuck when: 

– e1 or e2 is itself stuck  

– e1 or e2 is a lambda  

– e1 or e2 is a variable 



Lecture 5 CSE P505 Autumn 2016  Dan Grossman 40 

Sound and complete 

• Definition: A type system is sound if it never accepts a program that 

can get stuck 
 

• Definition: A type system is complete if it always accepts a program 

that cannot get stuck 
 

• Soundness and completeness are desirable 
 

• But impossible (undecidable) for lambda-calculus 

– If e has no constants or free variables, then e (3 4) 

 gets stuck iff e terminates 

– As is any non-trivial property for a Turing-complete PL 
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What to do 

• Old conclusion: “strong types for weak minds” 

– Need an unchecked cast (a back-door) 

 

• Modern conclusion:  

– Make false positives rare and false negatives impossible (be 
sound and expressive) 

– Make workarounds reasonable 

– Justification: false negatives too expensive, have compile-
time resources for “fancy” type-checking 

 

• Okay, let’s actually try to do it… 
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τ ::= int | function 
 

A judgment:   ├ e : τ  

  

(for which we “hope” there’s an efficient algorithm) 

 

Wrong attempt 

 

––––––––––––       –––––––––––––––––– 

       ├ c : int           ├ (λx.e):function 

 

     ├  e1 : function  ├  e2 : int 

        –––––––––––––––––––––––––––––– 

                      ├  e1 e2 : int 
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So very wrong 

1. Unsound: (λx.y) 3 

2. Disallows function arguments: (λx. x 3) (λy.y) 

3. Types not preserved: (λx.(λy.y)) 3 

• Result is not an int 

 

––––––––––––       –––––––––––––––––– 

       ├ c : int           ├ (λx.e):function 

 

     ├  e1 : function  ├  e2 : int 

        –––––––––––––––––––––––––––––– 

                      ├  e1 e2 : int 
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Getting it right 

1. Need to type-check function bodies, which have free variables 

2. Need to distinguish functions according to argument and result 
types 

 

For (1):   Γ ::= . | Γ, x : τ and  Γ ├ e : τ  
 

– A type-checking environment (called a context) 
 

For (2):   τ ::= int | τ→ τ 
 

– Arrow is part of the (type) language (not meta) 

– An infinite number of types 

– Just like OCaml 
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Examples and syntax 

• Examples of types 

 int → int 

  (int → int) → int 

 int → (int → int) 

 

• Concretely → is right-associative 

– i.e., τ1→ τ2→ τ3 is τ1→ (τ2→ τ3) 

– Just like OCaml 
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STLC in one slide 

Expressions:   e ::= x | λx. e | e e | c 

     Values:   v ::= λx. e | c 

         Types:   τ ::= int | τ→ τ 

     Contexts:   Γ ::= . | Γ, x : τ 

   e1 → e1’           e2 → e2’ 

–––––––––––––    –––––––––––     ––––––––––––––––– 
e1 e2 → e1’ e2  v e2 → v e2’ (λx.e) v → e{v/x}                 

  –––––––––––        –––––––––––– 

   Γ ├ c : int     Γ ├ x : Γ(x)  
 

 

       Γ,x:τ1 ├  e:τ2            Γ ├ e1:τ1→ τ2  Γ ├ e2:τ1 

––––––––––––––––––   –––––––––––––––––––––––– 
   Γ ├ (λx.e):τ1→ τ2       Γ ├ e1 e2:τ2      

 

e→e’ 

  

 

Γ ├ e: τ 

  


