
CSEP505: Programming Languages

Lecture 5: Continuations, Types

…

Dan Grossman

Autumn 2016

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 2

Remember our symbol-pile

 Expressions: e ::= x | λx. e | e e

 Values: v ::= λx. e

 e1  λx. e3 e2  v2 e3{v2/x}  v

–––––––––––– [lam] ––––––––––––––––––––––––––––– [app]

 λx. e  λx. e e1 e2  v

e  v

e3{v2/x} is the “capture-avoiding substitution of v2 for x in e3”

• Capture is an insidious error in program rewriters

• Formally avoided via “systematic renaming (alpha conversion)”

– Ensure free variables in v2 are not binders in e3

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 3

Untyped Lambda Calculus

• Go back to math metalanguage

– Notes on concrete syntax (relates to OCaml)

– Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

– And revisit function equivalences

• Environments

Now:

• Small-step

• Play with continuations (“very fancy” language feature)

Then: On to types

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 4

Small-step CBV

• Left-to-right small-step judgment

 e1 → e1’ e2 → e2’

–––––––––––– –––––––––––– –––––––––––––

e1 e2 → e1’ e2 v e2 → v e2’ (λx.e) v → e{v/x}

• Need an “outer loop” as usual:

– * means “0 or more steps”

– Don’t usually bother writing rules, but they’re easy:

 e1 → e2 e2 →* e3

–––––––––– ––––––––––––––––––––

 e →* e e1 →* e3

e → e’

e →* e’

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 5

In OCaml

type exp =

 V of string | L of string*exp | A of exp * exp

let subst e1_with e2_for s = …

let rec interp_one e =

 match e with

 V _ -> failwith "interp_one"(*unbound var*)

 | L _ -> failwith "interp_one" (*already done*)

 | A(L(s1,e1),L(s2,e2)) -> subst e1 (L(s2,e2)) s1

 | A(L(s1,e1),e2) -> A(L(s1,e1),interp_one e2)

 | A(e1,e2) -> A(interp_one e1, e2)

let rec interp_small e =

 match e with

 V _ -> failwith "interp_small" (*unbound var*)

 | L _ -> e

 | A(e1,e2) -> interp_small (interp_one e)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 6

Unrealistic, but…

• For all e and v,

 e  v if and only if e →* v

• Small-step distinguishes infinite-loops from stuck programs

• It’s closer to a contextual semantics that can define continuations

– We’ll stick to OCaml for this

– And we’ll do it much less efficiently than is possible

• For the curious: read about Landin’s SECD machine

[1960!]

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 7

Rethinking small-step

• An e is a tree of calls, with variables or lambdas at the leaves

• Find the next function call (or other “primitive step”) to do

• Do it

• Repeat (“new” next primitive step could be various places)

• Let’s move the first step out and produce a data structure
describing where the next “primitive step” occurs

– Called an evaluation context

– Think call stack

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 8

Compute the context

(* represent "where" the next step "is" *)

type ectxt = Hole

 | ALeft of ectxt * exp

 | ARight of exp * ectxt (*exp a value*)

let rec split e = (*return ctxt & what’s in it*)

 match e with

 A(L(s1,e1),L(s2,e2)) -> (Hole,e)

 | A(L(s1,e1),e2) -> let (ctx2,e3) = split e2 in

 (ARight(L(s1,e1),ctx2), e3)

 | A(e1,e2) -> let (ctx1,e3) = split e1 in

 (ALeft(ctx1,e2), e3)

 | _ -> raise BadArgument

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 9

Fill a context

type ectxt = Hole

 | ALeft of ectxt * exp

 | ARight of exp * ectxt (*exp a value*)

let rec fill ctx e = (* plug the hole *)

 match ctx with

 Hole -> e

 | ALeft(ctx2,e2) -> A(fill ctx2 e, e2)

 | ARight(e2,ctx2) -> A(e2, fill ctx2 e)

• We can also take a context and fill its hole with an expression to

make a new program (expression)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 10

So what?

• Haven’t done much yet:

– e = (let ctxt,e2 = split e in fill ctxt e2)

• But we can rewrite interp_small with them

– A step has three parts: split, substitute, fill

let rec interp_small e =

 match e with

 V _ -> failwith "interp_small"(*unbound var*)

 | L _ -> e

 | A _ ->

 match split e with

 (ctx, A(L(s3,e3),v)) ->

 interp_small(fill ctx (subst e3 v s3))

 | _ -> failwith "bad split"

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 11

Again, so what?

• Well, now we “have our hands” on a context

– Could save and restore them

– (like Homework 2 with heaps, but this “is” the call stack)

– It’s easy given this semantics!

• Sufficient for:

– Exceptions

– Cooperative threads / coroutines

– “Time travel” with stacks

– setjmp/longjmp

• Also (not shown): No need to resplit each time – “keep track”

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 12

Language w/ continuations

• New expression: Letcc gets current context (“grab the stack”)

• Now 2 kinds of values, but use application to use both

– Could instead have 2 kinds of application + errors

• New kind stores a context (that can be restored)

type exp =

 V of string

 | L of string*exp

 | A of exp * exp

 | Letcc of string * exp (* new *)

 | Cont of ectxt (* new *)

and ectxt = Hole (* no change *)

 | ALeft of ectxt * exp

 | ARight of exp * ectxt

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 13

Split with Letcc

• Old: All values were some L(s,e)

• New: Values can also be Cont c

• Old: active expression (thing in the hole) always some

 A(L(s1,e1),L(s2,e2))

• New: active expression (thing in the hole) can be:

– A(v1,v2)

– Letcc(s,e)

• So split looks quite different to implement these changes

– Not really that different

• fill does not change at all

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 14

Split with Letcc

let isValue e =

 match e with

 L _ -> true | Cont _ -> true | _ -> false

let rec split e =

 match e with

 Letcc(s1,e1) -> (Hole,e) (* new *)

 | A(e1,e2) ->

 if isValue e1 && isValue e2

 then (Hole,e)

 else if isValue e1

 then let (ctx2,e3) = split e2 in

 (ARight(e1,ctx2),e3)

 else let (ctx1,e3) = split e1 in

 (ALeft(ctx1,e2), e3)

 | _ -> failwith "bad args to split"

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 15

All the action

• Letcc creates a Cont that “grabs the current context”

• A where body is a Cont “ignores current context”

let rec interp_small e =

 match e with

 V _ -> failwith "interp_small" (*unbound var*)

 | L _ -> e

 | _ -> match split e with

 (ctx, A(L(s3,e3), v)) ->

 interp_small(fill ctx (subst e3 v s3))

 |(ctx, Letcc(s3,e3)) ->

 interp_small(fill ctx

 (*woah!!!*) (subst e3 (Cont ctx) s3))

 |(ctx, A(Cont ctx2, v)) ->

 interp_small(fill ctx2 v) (*woah!!!*)

 | _ -> failwith "bad split"

Toy Examples

[In language with addition too and explicit “throw”]

1 + (letcc k. 2 + 3) →* 6

1 + (letcc k. 2 + (throw k 3)) →* 4

1 + (letcc k. (throw k (2+3))) →* 6

1 + (letcc k. (throw k (throw k (throw k 2))) →* 3

Also note evaluation-order matters, even without mutation (!)

letcc k. (throw k 1) + (throw k 2)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 16

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 17

Example Uses

• Continuations for exceptions is “easy”

– Letcc(x,e) for try, Apply(Var x, v) for raise v in e

• Coroutines can yield to each other

– Pass around a yield function that takes an argument

• “how to restart me”

– Body of yield applies the “old how to restart me” passing the

“new how to restart me”

• Can generalize to cooperative thread-scheduling

• With mutation can really do strange stuff

– The “goto of functional programming”

– Example of “time travel” to “old stack”…

“Time Travel”

OCaml doesn’t have first-class continuations, but if it did:

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 18

let valOf x = match x with None -> failwith ""

 | Some y -> y

let x = ref true (*avoids infinite loop*)

let g = ref None

let y = ref (1 + 2 + (letcc k -> (g := Some k); 3))

let z = if !x

 then (x := false;

 throw (valOf (!g)) 7;

 42)

 else !y

(* what is z bound to and why? *)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 19

A lower-level view

• If you’re confused, think call-stacks

– What if YFL had these operations:

• Store current stack in x (cf. Letcc)

• Replace current stack with stack in x

– Need to “fill the stack’s hole” with something different and/or
when state is different or you’ll have an infinite loop

• Implementing (e.g., compiling) Letcc

– You do not actually split/fill at each step

– Cannot just do setjmp/longjmp because a continuation can
get returned from a function and used later!

– Can actually copy stacks (expensive)

– Or can avoid stacks (put stack-frames in heap)

• Just share and rely on garbage collection

– Or…

The CPS-Transform

There’s a subset of lambda-calculus called “continuation-passing

style” (CPS). It’s amazing:

– Every call is [essentially] a tail-call

– It can do everything full lambda-calculus can

– In fact, one can automatically translate full lambda-calculus

into CPS

• CPS(e) (λx.x) evaluates to 42 if and only if e does

• Different translations fix different evaluation orders

– The translation is a powerful compiler technique

– And it motivates/explains a powerful programming idiom

– And it makes letcc and throw O(1) operations

– And it’s mind-bending…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 20

CPS transformation

A CPS transformation is a metafunction from expressions to

expressions

– Intuition: never return; always call the continuation you’re

given as an argument

– An int expression becomes an

(int -> answer_type) -> answer_type

– Example: CPS(73) = (λk. k 73)

– Convert entire program this way and then “main” is some
(λk.e) that you can call with (λx.x)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 21

Without further ado [but slowly ]

A call-by-value CPS transformation for this source language

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 22

 Expressions: e ::= x | λx. e | e e | c | e + e

 Values: v ::= λx. e | c

 CPS(c) = λk. k c

 CPS(x) = λk. k x (any k != x)

 CPS(λx.e) = λx. CPS(e)

 or λx. λk. CPS(e) k (any k not in FV(e))

 CPS(e1 + e2) = λk. CPS(e1) (any k,x1 not in FV(e1+e2))

 (λx1. CPS(e2)

 (λx2. k (x1 + x2)))

CPS(e1 e2) = λk. CPS(e1) (any k,f not in FV(e1 e2))

 λf. CPS(e2)

 λx. f x k (why not k (f x)?)

Everything is a tail-call

• For all e, CPS(e) is in this sublanguage and stays in it during

evaluation:

 e ::= a | a a | a a a | a (a + a)

 a ::= x | λx. e | c

• An interpreter for the target of CPS doesn’t need a call-stack

because every call is a tail-call

• Essentially, the program itself is encoding the conceptual call-
stack in nested continuations (lambdas bound to k variables)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 23

Programming this way

• Even if your compiler doesn’t use the CPS transform, you can

program directly (“manually”) in CPS (a “style” or “idiom”)

– So you are manually using only tail-calls by using “clever”

(but mechanical) lambdas for continuations

– Moves “deep recursion” from the stack to the heap

• See examples in cps_examples.ml

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 24

Back to first-class continuations

• Next “amazing” thing: If we add (back) letcc and throw:

– CPS(e) works fine

– It “compiles away” letcc and throw to constant-time

operations (!!)

– “The continuations” are just lambdas bound to variables

• See next slide…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 25

CPS transformation for continuations

• Old news:

CPS(c) = λk. k c

CPS(x) = λk. k x (any k != x)

CPS(λx.e) = λx. CPS(e) or λx. λk. CPS(e) k

CPS(e1 e2) = λk. CPS(e1) (λf. CPS(e2) (λx. f x k))

• Now:

CPS(letcc my_k. e) = λmy_k. CPS(e) my_k

CPS(throw e1 e2) = λk. CPS(e1) CPS(e2) (doesn’t use k!!)

(easier to understand but verbose:

 λk. CPS(e1) (λf. CPS(e2) (λx. f x)))

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 26

Really small examples

The rule:

CPS(letcc my_k. e) = λmy_k. CPS(e) my_k

Example #1:

 CPS(letcc my_k. 42) =

λmy_k. (λk. k 42) my_k

Example #2:

 CPS(letcc my_k. my_k) =

λmy_k. (λk. k my_k) my_k

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 27

Back to programming

• You can use this idea in “manual” CPS too

• See OCaml example for “fast-escape from recursion”

– Same idea for exceptions

• And a compiler using CPS can implement exceptions this

way

– Time travel works too [not shown]

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 28

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 29

Another “real-world” use

• A great way to think about some of web programming

– Each step in a web session is an evaluation context

 send(page1);

 receive(form_input);

 if … then send(page2); … send(page3); …

– But want to program in “direct style” and have the different

steps be automatically “checkpointed”

• To support the back button and session saving

• Compile program into something using continuations

• Then encode continuation in a URL or some other hack

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 30

Where are we

Finished major parts of the course

• Functional programming

• IMP, loops, modeling mutation

• Lambda-calculus, modeling functions

• Formal semantics

• Contexts, continuations

 A mix of super-careful definitions for things you know and using
our great care to describe more novel things (state monad,
continuations)

Major new topic: Types!

– Continue using lambda-calculus as our model

– But no need to understand continuations for rest of lecture

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 31

Types Intro

Naïve thought: More powerful PL is better

• Be Turing Complete

• Have really flexible things (lambda, continuations, …)

• Have conveniences to keep programs short

By this metric, types are a step backward

– Whole point is to allow fewer programs

– A “filter” between parse and compile/interp

– Why a great idea?

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 32

Why types

1. Catch “stupid mistakes” early

• 3 + "hello"

• print_string "hi" ^ "mom"

• But may be too early (code not used, …)

2. “Safety”: Prevent getting stuck / going haywire

• Know evaluation cannot ever get to the point where the

next step “makes no sense”

• Alternative: language makes everything make sense

• Example: ClassCastException

• Example: MethodNotFoundException

• Example: 3 + "hi" becomes "3hi" or 0

• Alternative: language can do whatever ?!

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 33

Digression/sermon

Unsafe languages have operations where under some situations
the implementation “can do anything”

IMP with unsafe C arrays has this rule (any H2;s2!):

Abstraction, modularity, encapsulation are impossible because one
bad line can have arbitrary global effect

An engineering disaster (cf. civil engineering)

H;e1  {v1,…,vn} H;e2  i i > n

–––––––––––––––––––––––––––––––––––––

 H; e1[i]=e2  H2;s2

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 34

Why types, continued

3. Enforce a strong interface (via an abstract type)

• Clients can’t break invariants

• Clients can’t assume an implementation

• Requires safety

4. Allow faster implementations

• Smaller interfaces enable optimizations

• Don’t have to check for impossible cases

• Orthogonal to safety

5. Static overloading (e.g., with +)

• Not super interesting

• Late-binding very interesting (come back to this?)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 35

Why types, continued

6. Novel uses

• A powerful way to think about many conservative program

analyses/restrictions

• Examples: race-conditions, manual memory management,

security leaks, …

• Deep similarities among different analyses suggests types

are a good way to think about and define what you’re

checking

We’ll focus on safety and strong interfaces

• And later discuss the “static types or not” debate

 (it’s really a continuum)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 36

Our plan

• Simply-typed lambda-calculus

• Safety = (preservation + progress)

• Extensions (pairs, datatypes, recursion, etc.)

• Digression: static vs. dynamic typing

• Digression: Curry-Howard Isomorphism

• Subtyping

• Type Variables:

– Generics (), Abstract types ()

• Type inference (maybe)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 37

Adding integers

Adding integers to the lambda-calculus:

Expressions: e ::= x | λx. e | e e | c

 Values: v ::= λx. e | c

Could add + and other primitives or just parameterize “programs” by

them: λplus. λminus. … e

– Like Pervasives in OCaml

– A great idea for keeping language definitions small

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 38

Stuck

• Key issue: can a program e “get stuck” (small-step):

– e →* e1

– e1 is not a value

– There is no e2 such that e1 → e2

• “What is stuck” depends on the semantics:

 e1 → e1’ e2 → e2’

–––––––––––– –––––––––––– –––––––––––––

e1 e2 → e1’ e2 v e2 → v e2 ’ (λx.e) v → e{v/x}

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 39

STLC Stuck

• S ::= c v | x v | (λx.e) y | S e | (λx.e) S

• It’s unusual to define these explicitly, but good for understanding

• Most people don’t realize “safety” depends on the semantics:

– We can add “cheat” rules to “avoid” being stuck

• With e1 + e2, would also be stuck when:

– e1 or e2 is itself stuck

– e1 or e2 is a lambda

– e1 or e2 is a variable

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 40

Sound and complete

• Definition: A type system is sound if it never accepts a program that

can get stuck

• Definition: A type system is complete if it always accepts a program

that cannot get stuck

• Soundness and completeness are desirable

• But impossible (undecidable) for lambda-calculus

– If e has no constants or free variables, then e (3 4)

 gets stuck iff e terminates

– As is any non-trivial property for a Turing-complete PL

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 41

What to do

• Old conclusion: “strong types for weak minds”

– Need an unchecked cast (a back-door)

• Modern conclusion:

– Make false positives rare and false negatives impossible (be
sound and expressive)

– Make workarounds reasonable

– Justification: false negatives too expensive, have compile-
time resources for “fancy” type-checking

• Okay, let’s actually try to do it…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 42

τ ::= int | function

A judgment: ├ e : τ

(for which we “hope” there’s an efficient algorithm)

Wrong attempt

–––––––––––– ––––––––––––––––––

 ├ c : int ├ (λx.e):function

 ├ e1 : function ├ e2 : int

 ––––––––––––––––––––––––––––––

 ├ e1 e2 : int

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 43

So very wrong

1. Unsound: (λx.y) 3

2. Disallows function arguments: (λx. x 3) (λy.y)

3. Types not preserved: (λx.(λy.y)) 3

• Result is not an int

–––––––––––– ––––––––––––––––––

 ├ c : int ├ (λx.e):function

 ├ e1 : function ├ e2 : int

 ––––––––––––––––––––––––––––––

 ├ e1 e2 : int

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 44

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to distinguish functions according to argument and result
types

For (1): Γ ::= . | Γ, x : τ and Γ ├ e : τ

– A type-checking environment (called a context)

For (2): τ ::= int | τ→ τ

– Arrow is part of the (type) language (not meta)

– An infinite number of types

– Just like OCaml

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 45

Examples and syntax

• Examples of types

 int → int

 (int → int) → int

 int → (int → int)

• Concretely → is right-associative

– i.e., τ1→ τ2→ τ3 is τ1→ (τ2→ τ3)

– Just like OCaml

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 46

STLC in one slide

Expressions: e ::= x | λx. e | e e | c

 Values: v ::= λx. e | c

 Types: τ ::= int | τ→ τ

 Contexts: Γ ::= . | Γ, x : τ

 e1 → e1’ e2 → e2’

––––––––––––– ––––––––––– –––––––––––––––––
e1 e2 → e1’ e2 v e2 → v e2’ (λx.e) v → e{v/x}

 ––––––––––– ––––––––––––

 Γ ├ c : int Γ ├ x : Γ(x)

 Γ,x:τ1 ├ e:τ2 Γ ├ e1:τ1→ τ2 Γ ├ e2:τ1

–––––––––––––––––– ––––––––––––––––––––––––
 Γ ├ (λx.e):τ1→ τ2 Γ ├ e1 e2:τ2

e→e’

Γ ├ e: τ

