CSEP505: Programming Languages
Lecture 5: Continuations, Types
...

Dan Grossman
Autumn 2016

Remember our symbol-pile

$e 3\{v 2 / x\}$ is the "capture-avoiding substitution of $v 2$ for x in e3"

- Capture is an insidious error in program rewriters
- Formally avoided via "systematic renaming (alpha conversion)"
- Ensure free variables in v2 are not binders in e3

Small-step CBV

- Left-to-right small-step judgment $e \rightarrow e^{\prime}$

$e 1 \rightarrow e{ }^{\prime}$	$e 2 \rightarrow e 2$,	
e1 e2 \rightarrow e1'e2	ve2 \rightarrow ve2'	($\lambda x . e) ~ v \rightarrow e\{v / x\}$

- Need an "outer loop" as usual:

$$
e \rightarrow^{*} e^{\prime}
$$

- * means "0 or more steps"
- Don't usually bother writing rules, but they're easy:

In OCaml

```
type exp =
    V of string | L of string*exp | A of exp * exp
let subst e1_with e2_for s =
let rec interp_one e =
    match e with
        V _ -> failwith "interp_one"(*unbound var*)
    | L - -> failwith "interp_one" (*already done*)
    | A(L(s1,e1),L(s2,e2)) -> subst e1 (L(s2,e2)) s1
    | A(L(s1,e1),e2) -> A(L(s1,e1),interp_one e2)
    | A(e1,e2) -> A(interp_one e1, e2)
let rec interp_small e =
    match e with
        V _ -> failwith "interp_small" (*unbound var*)
    | L -> e
    | A(\overline{e}1,e2) -> interp_small (interp_one e)
```

Lecture 5

- Go back to math metalanguage
- Notes on concrete syntax (relates to OCaml)
- Define semantics with inference rules
- Lambda encodings (show our language is mighty)
- Define substitution precisely
- And revisit function equivalences
- Environments

Now:

- Small-step
- Play with continuations ("very fancy" language feature)

Then: On to types
Lecture 5
$\frac{e 1 \rightarrow e 2 \quad e 2 \rightarrow^{*} e 3}{e \rightarrow^{*} e} \frac{e 1 \rightarrow^{*} e 3}{e}$

Lecture 5
CSE P505 Autumn 2016 Dan Grossman

Unrealistic, but...

- For all e and v,
$e \downarrow v$ if and only if $e \rightarrow^{*} v$
- Small-step distinguishes infinite-loops from stuck programs
- It's closer to a contextual semantics that can define continuations
- We'll stick to OCaml for this
- And we'll do it much less efficiently than is possible
- For the curious: read about Landin's SECD machine [1960!]

Rethinking small-step

- An e is a tree of calls, with variables or lambdas at the leaves
- Find the next function call (or other "primitive step") to do
- Do it
- Repeat ("new" next primitive step could be various places)
- Let's move the first step out and produce a data structure describing where the next "primitive step" occurs
- Called an evaluation context
- Think call stack

Compute the context

```
```

(* represent "where" the next step "is" *)

```
```

(* represent "where" the next step "is" *)
type ectxt = Hole
type ectxt = Hole
| ALeft of ectxt * exp
| ALeft of ectxt * exp
| ARight of exp * ectxt (*exp a value*)
| ARight of exp * ectxt (*exp a value*)
let rec split e = (*return ctxt \& what's in it*)
let rec split e = (*return ctxt \& what's in it*)
match e with
match e with
A(L(s1,e1),L(s2,e2)) -> (Hole,e)
A(L(s1,e1),L(s2,e2)) -> (Hole,e)
| A(L(s1,e1),e2) -> let (ctx2,e3) = split e2 in
| A(L(s1,e1),e2) -> let (ctx2,e3) = split e2 in
(ARight(L(s1,e1),ctx2), e3)
(ARight(L(s1,e1),ctx2), e3)
| A(e1,e2) -> let (ctx1,e3) = split e1 in
| A(e1,e2) -> let (ctx1,e3) = split e1 in
(ALeft(ctx1,e2), e3)
(ALeft(ctx1,e2), e3)
| _ -> raise BadArgument

```
```

 | _ -> raise BadArgument
    ```
```


Fill a context

- We can also take a context and fill its hole with an expression to make a new program (expression)

```
type ectxt = Hole
    | ALeft of ectxt * exp
    | ARight of exp * ectxt (*exp a value*)
let rec fill ctx e = (* plug the hole *)
    match ctx with
        Hole -> e
    ALeft(ctx2,e2) -> A(fill ctx2 e, e2)
    ARight(e2,ctx2) -> A(e2, fill ctx2 e)
```


Again, so what?

- Well, now we "have our hands" on a context
- Could save and restore them
- (like Homework 2 with heaps, but this "is" the call stack)
- It's easy given this semantics!
- Sufficient for:
- Exceptions
- Cooperative threads / coroutines
- "Time travel" with stacks
- setjmp/longjmp
- Also (not shown): No need to resplit each time - "keep track"
- Haven't done much yet:
- e = (let ctxt,e2 = split e in fill ctxt e2)
- But we can rewrite interp_small with them
- A step has three parts: split, substitute, fill

```
let rec interp_small e =
    match e with
    V _ -> failwith "interp_small"(*unbound var*)
    | L_ -> e
    | A_->
        mätch split e with
            (ctx, A(L(s3,e3),v)) ->
                interp_small(fill ctx (subst e3 v s3))
        | _ -> failwith "bad split"
```


Language w/ continuations

- New expression: Letcc gets current context ("grab the stack")
- Now 2 kinds of values, but use application to use both
- Could instead have 2 kinds of application + errors
- New kind stores a context (that can be restored)

```
type exp =
        v of string
    L of string*exp
    | A of exp * exp
    | Letcc of string * exp (* new *)
    | Cont of ectxt (* new *)
and ectxt = Hole (* no change *)
    | ALeft of ectxt * exp
    | ARight of exp * ectxt
```


Split with Letcc

- Old: All values were some L (s,e)
- New: Values can also be Cont c
- Old: active expression (thing in the hole) always some

$$
A(L(s 1, e 1), L(s 2, e 2))
$$

- New: active expression (thing in the hole) can be:
- A (v1, v2)
- Letcc (s,e)
- So split looks quite different to implement these changes
- Not really that different
- fill does not change at all

Split with Letcc

14

```
```

let isValue e =

```
```

let isValue e =
match e with
match e with
L _ -> true | Cont _ -> true | _ -> false
L _ -> true | Cont _ -> true | _ -> false
let rec split e =
let rec split e =
match e with
match e with
Letcc(s1,e1) -> (Hole,e) (* new *)
Letcc(s1,e1) -> (Hole,e) (* new *)
| A(e1,e2) ->
| A(e1,e2) ->
if isValue e1 \&\& isValue e2
if isValue e1 \&\& isValue e2
then (Hole,e)
then (Hole,e)
else if isValue e1
else if isValue e1
then let (ctx2,e3) = split e2 in
then let (ctx2,e3) = split e2 in
(ARight(e1, ctx2) ,e3)
(ARight(e1, ctx2) ,e3)
else let (ctx1,e3) = split e1 in
else let (ctx1,e3) = split e1 in
(ALeft(ctx1,e2), e3)
(ALeft(ctx1,e2), e3)
| _ -> failwith "bad args to split"

```
```

| _ -> failwith "bad args to split"

```
```

Lecture 5
CSE P505 Autumn 2016 Dan Grossman
ecture 5
Autumn 2016 Dan Grossman

All the action

- Letcc creates a cont that "grabs the current context"
- A where body is a Cont "ignores current context"

```
let rec interp_small e =
    match e with
    V _ -> failwith "interp_small" (*unbound var*)
    | L_ -> e
    | _ \overline{> match split e with}
        (ctx, A(L (s3,e3), v)) ->
            interp_small(fill ctx (subst e3 v s3))
        |(ctx, Letcc(s3,e3)) ->
            interp_small(fill ctx
                (*woah!!!*) (subst e3 (Cont ctx) s3))
    |(ctx, A(Cont ctx2, v)) ->
        interp_small(fill ctx2 v) (*woah!!!*)
    | _ -> faiIwith "bad split"
Lecture 5 CSE P505 Autumn 2016 Dan Grossman 15
```


Example Uses

- Continuations for exceptions is "easy"
- Letcc (\mathbf{x}, e) for try, Apply (Var x, v) for raise v in e
- Coroutines can yield to each other
- Pass around a yield function that takes an argument - "how to restart me"
- Body of yield applies the "old how to restart me" passing the "new how to restart me"
- Can generalize to cooperative thread-scheduling
- With mutation can really do strange stuff
- The "goto of functional programming"
- Example of "time travel" to "old stack"...

Toy Examples

[In language with addition too and explicit "throw"]

"Time Travel"

OCaml doesn't have first-class continuations, but if it did:

```
let valOf x = match x with None -> failwith ""
    | Some y -> y
let x = ref true (*avoids infinite loop*)
let g = ref None
let y = ref (1 + 2 + (letcc k -> (g := Some k); 3))
let z = if !x
            then (x := false;
            throw (valOf (!g)) 7;
            42)
    else !y
(* what is z bound to and why? *)
```


A lower-level view

- If you're confused, think call-stacks
- What if YFL had these operations:
- Store current stack in \mathbf{x} (cf. Letcc)
- Replace current stack with stack in \mathbf{x}
- Need to "fill the stack's hole" with something different and/or when state is different or you'll have an infinite loop
- Implementing (e.g., compiling) Letcc
- You do not actually split/fill at each step
- Cannot just do setjmp/longjmp because a continuation can get returned from a function and used later!
- Can actually copy stacks (expensive)
- Or can avoid stacks (put stack-frames in heap)
- Just share and rely on garbage collection
- Or...

Lecture 5
CSE P505 Autumn 2016 Dan Grossman

The CPS-Transform

There's a subset of lambda-calculus called "continuation-passing style" (CPS). It's amazing:

- Every call is [essentially] a tail-call
- It can do everything full lambda-calculus can
- In fact, one can automatically translate full lambda-calculus into CPS
- CPS(e) ($\lambda x . x$) evaluates to 42 if and only if e does
- Different translations fix different evaluation orders
- The translation is a powerful compiler technique
- And it motivates/explains a powerful programming idiom
- And it makes letcc and throw $O(1)$ operations
- And it's mind-bending...

CPS transformation

```
A CPS transformation is a metafunction from expressions to expressions
- Intuition: never return; always call the continuation you're given as an argument
- An int expression becomes an (int -> answer_type) -> answer_type
- Example: \(\mathrm{CPS}(73)=(\lambda k . \quad k \quad 73)\)
- Convert entire program this way and then "main" is some ( \(\boldsymbol{\lambda k} . \boldsymbol{e}\) ) that you can call with ( \(\boldsymbol{\lambda x} \cdot \mathbf{x}\) )
```


Everything is a tail-call

- For all $e, \operatorname{CPS}(e)$ is in this sublanguage and stays in it during evaluation:

```
e ::= a | a a | a a a | a (a + a)
a ::= x | \lambdax.e | c
```

- An interpreter for the target of CPS doesn't need a call-stack because every call is a tail-call
- Essentially, the program itself is encoding the conceptual callstack in nested continuations (lambdas bound to \boldsymbol{k} variables)

Back to first-class continuations

- Next "amazing" thing: If we add (back) letcc and throw:
- CPS(e) works fine
- It "compiles away" letcc and throw to constant-time operations (!!)
_ "The continuations" are just lambdas bound to variables
- See next slide...

CPS transformation for continuations

- Old news:
$\operatorname{CPS}(c)=\lambda k . k c$
$\operatorname{CPS}(\mathbf{x}) \quad=\lambda \boldsymbol{k} \cdot \boldsymbol{k} \mathbf{x} \quad$ (any $k!=x$)
$C P S(\lambda \mathbf{x} . e)=\lambda \mathbf{x} . C P S(e)$ or $\lambda \mathbf{x} . \lambda \boldsymbol{k} . C P S(e) k$
$C P S(e 1-e 2)=\lambda k . C P S(e 1)(\lambda f . C P S(e 2)(\lambda x . f x k))$
- Now:

CPS(letcc my_k. e) $=\lambda m y_{-} k \cdot C P S(e) m y_{-} k$

CPS(throw e1 e2) = λk. CPS(e1) CPS(e2) (doesn't use k!!)
(easier to understand but verbose:

$$
\lambda k \cdot C P S(e 1)(\lambda f . C P S(e 2)(\lambda x \cdot f x)))
$$

Lecture 5

Really small examples

The rule:
CPS(letcc my_k. e) $=\lambda m y_{\mathbf{Z}} k \cdot C P S(e) m y_{-} k$

Example \#1:
CPS(letcc my_k. 42) =
$\lambda m y_{-} k$. (λk. k 42) $m y_{-} k$

Example \#2:
CPS(letcc my_k. my_k) $=$
$\lambda m y_{-} k$. (λk. $k m y_{-} k$) $m y_{-} k$

Another "real-world" use

- A great way to think about some of web programming
- Each step in a web session is an evaluation context

send (page1);

receive (form_input);
if ... then send (page2) ; ... send(page3) ; ...

- But want to program in "direct style" and have the different steps be automatically "checkpointed"
- To support the back button and session saving
- Compile program into something using continuations
- Then encode continuation in a URL or some other hack

Where are we

Finished major parts of the course

- Functional programming
- IMP, loops, modeling mutation
- Lambda-calculus, modeling functions
- Formal semantics
- Contexts, continuations

A mix of super-careful definitions for things you know and using our great care to describe more novel things (state monad, continuations)
Major new topic: Types!

- Continue using lambda-calculus as our model
- But no need to understand continuations for rest of lecture

Types Intro

Naïve thought: More powerful PL is better

- Be Turing Complete
- Have really flexible things (lambda, continuations, ...)
- Have conveniences to keep programs short

By this metric, types are a step backward

- Whole point is to allow fewer programs
- A "filter" between parse and compile/interp
- Why a great idea?

1. Catch "stupid mistakes" early

- 3 + "hello"
- print_string "hi" ^ "mom"
- But may be too early (code not used, ...)

2. "Safety": Prevent getting stuck / going haywire

- Know evaluation cannot ever get to the point where the next step "makes no sense"
- Alternative: language makes everything make sense
- Example: ClassCastException
- Example: MethodNotFoundException
- Example: $3+$ "hi" becomes "3hi" or 0
- Alternative: language can do whatever ?!

Digression/sermon

Unsafe languages have operations where under some situations the implementation "can do anything"

IMP with unsafe C arrays has this rule (any H 2 ;s2!):
$\mathrm{H} ; \mathrm{e} 1 \downarrow\{\mathrm{v} 1, \ldots, \mathrm{vn}\} \quad \mathrm{H} ; \mathrm{e} 2 \downarrow \mathrm{i} \quad \mathrm{i}>\mathrm{n}$

$$
\mathrm{H} ; \mathrm{e} 1[\mathrm{i}]=\mathrm{e} 2 \downarrow \mathrm{H} 2 ; \mathrm{s} 2
$$

Abstraction, modularity, encapsulation are impossible because one bad line can have arbitrary global effect
An engineering disaster (cf. civil engineering)

Why types, continued

3. Enforce a strong interface (via an abstract type)

- Clients can't break invariants
- Clients can't assume an implementation
- Requires safety

4. Allow faster implementations

- Smaller interfaces enable optimizations
- Don't have to check for impossible cases
- Orthogonal to safety

5. Static overloading (e.g., with +)

- Not super interesting
- Late-binding very interesting (come back to this?)

Why types, continued

6. Novel uses

- A powerful way to think about many conservative program analyses/restrictions
- Examples: race-conditions, manual memory management, security leaks, ...
- Deep similarities among different analyses suggests types are a good way to think about and define what you're checking

We'll focus on safety and strong interfaces

- And later discuss the "static types or not" debate (it's really a continuum)

Our plan

- Simply-typed lambda-calculus
- Safety = (preservation + progress)
- Extensions (pairs, datatypes, recursion, etc.)
- Digression: static vs. dynamic typing
- Digression: Curry-Howard Isomorphism
- Subtyping
- Type Variables:
- Generics (\forall), Abstract types (\exists)
- Type inference (maybe)

Adding integers

Adding integers to the lambda-calculus:

$$
\begin{aligned}
\text { Expressions: } & \mathbf{e}::=\boldsymbol{x}|\boldsymbol{\lambda x} . \boldsymbol{e}| \boldsymbol{e} \boldsymbol{e} \mid \boldsymbol{c} \\
\text { Values: } & \boldsymbol{v}::=\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e} \mid \boldsymbol{c}
\end{aligned}
$$

Could add + and other primitives or just parameterize "programs" by them: Aplus. Aminus. ... e

- Like Pervasives in OCaml
- A great idea for keeping language definitions small

Stuck

- Key issue: can a program e "get stuck" (small-step):
$-\mathrm{e} \rightarrow^{*}$ e1
- e1 is not a value
- There is no e2 such that e1 $\rightarrow \mathrm{e} 2$
- "What is stuck" depends on the semantics:

$$
\frac{e 1 \rightarrow e 1^{\prime}}{\frac{e 2 \rightarrow e 2^{\prime}}{e 1 e 2 \rightarrow e 1^{\prime} e 2} \quad \overline{v e 2 \rightarrow v e 2,} \quad \overline{(\lambda x . e) v \rightarrow e\{v / x\}}}
$$

STLC Stuck

- It's unusual to define these explicitly, but good for understanding
- Most people don't realize "safety" depends on the semantics:
- We can add "cheat" rules to "avoid" being stuck
- With e1 + e2, would also be stuck when:
- e1 or e2 is itself stuck
- e1 or e2 is a lambda
- e1 or e2 is a variable

What to do

- Old conclusion: "strong types for weak minds"
- Need an unchecked cast (a back-door)
- Modern conclusion:
- Make false positives rare and false negatives impossible (be sound and expressive)
- Make workarounds reasonable
- Justification: false negatives too expensive, have compiletime resources for "fancy" type-checking
- Okay, let's actually try to do it...

Sound and complete

- Definition: A type system is sound if it never accepts a program that can get stuck
- Definition: A type system is complete if it always accepts a program that cannot get stuck
- Soundness and completeness are desirable
- But impossible (undecidable) for lambda-calculus
- If e has no constants or free variables, then e (3 4) gets stuck iff e terminates
- As is any non-trivial property for a Turing-complete PL

Wrong attempt

| $\tau::=$ int \| function |
| :--- |
| A judgment: 1 -e $: \tau$ |
| (for which we "hope" there's an efficient algorithm) |

So very wrong

1. Unsound: $(\lambda \mathbf{x} . \mathrm{y}) 3$
2. Disallows function arguments: $(\lambda \mathbf{x} . \mathbf{x} 3)(\lambda \mathbf{y} \cdot \mathbf{y})$
3. Types not preserved: $(\lambda \mathbf{x} \cdot(\lambda \mathbf{y} \cdot \mathbf{y})) 3$

- Result is not an int

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to distinguish functions according to argument and result types

For (1): Г: :=. | Г, x: τ and 「卜e : τ

- A type-checking environment (called a context)

For (2): $\tau::=$ int $\mid \tau \rightarrow \tau$

- Arrow is part of the (type) language (not meta)
- An infinite number of types
- Just like OCaml

Examples and syntax

- Examples of types
int \rightarrow int
(int \rightarrow int) \rightarrow int
int \rightarrow (int \rightarrow int)
- Concretely \rightarrow is right-associative
- i.e., $\tau 1 \rightarrow \tau 2 \rightarrow \tau 3$ is $\tau 1 \rightarrow(\tau 2 \rightarrow \tau 3)$
- Just like OCaml

