
CSEP505: Programming Languages
Lecture 6: Types, Types, Types

Dan Grossman
Autumn 2016

Lecture 6 CSE P505 August 2016 Dan Grossman 2

Our plan

• Simply-typed Lambda-Calculus
• Safety = (preservation + progress)
• Extensions (pairs, datatypes, recursion, etc.)
• Digression: static vs. dynamic typing
• Digression: Curry-Howard Isomorphism
• Subtyping
• Type Variables:

– Generics (), Abstract types ()
• Type inference

Lecture 6 CSE P505 August 2016 Dan Grossman 3

STLC in one slide
Expressions: e ::= x | λx. e | e e | c
 Values: v ::= λx. e | c
 Types: τ ::= int | τ→ τ
 Contexts: Γ ::= . | Γ, x : τ

 e1 → e1’ e2 → e2’
––––––––––––– ––––––––––– –––––––––––––––––
e1 e2 → e1’ e2 v e2 → v e2’ (λx.e) v → e{v/x}

 ––––––––––– ––––––––––––
 Γ ├ c : int Γ ├ x : Γ(x)

 Γ,x:τ1 ├ e:τ2 Γ ├ e1:τ1→ τ2 Γ ├ e2:τ1
–––––––––––––––––– ––––––––––––––––––––––––

 Γ ├ (λx.e):τ1→ τ2 Γ ├ e1 e2:τ2

e→e’

Γ ├ e:τ

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 4

Rule-by-rule

• Constant rule: context irrelevant
• Variable rule: lookup (no instantiation if x not in Γ)
• Application rule: “yeah, that makes sense”
• Function rule the interesting one…

 ––––––––––– ––––––––––––
 Γ ├ c : int Γ ├ x : Γ(x)

 Γ,x:τ1 ├ e:τ2 Γ ├ e1:τ1→ τ2 Γ ├ e2:τ1
 –––––––––––––––––– ––––––––––––––––––––––––
 Γ ├ (λx.e):τ1→ τ2 Γ ├ e1 e2:τ2

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 5

The function rule

• Where did τ1 come from?
– Our rule “inferred” or “guessed” it
– To be syntax-directed, change λx.e to λx:τ.e and use

that τ
• If we think of Γ as a partial function, we need x not already in it

(implicit systematic renaming [alpha-conversion] allows)
– Or can think of it as shadowing

 Γ,x:τ1 ├ e:τ2
 ––––––––––––––––––
 Γ ├ (λx.e):τ1→ τ2

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 6

Our plan

• Simply-typed Lambda-Calculus
• Safety = (preservation + progress)
• Extensions (pairs, datatypes, recursion, etc.)
• Digression: static vs. dynamic typing
• Digression: Curry-Howard Isomorphism
• Subtyping
• Type Variables:

– Generics (), Abstract types (), Recursive types
• Type inference

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 7

Is it “right”?

• Can define any type system we want

• What we defined is sound and incomplete

• Can prove incomplete with one example
– Every variable has exactly one simple type
– Example (doesn’t get stuck, doesn’t typecheck)
 (λx. (x (λy.y)) (x 3)) (λz.z)

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 8

Sound

• Statement of soundness theorem:
 If . ├ e:τ and e→*e2,
 then e2 is a value or there exists an e3 such that e2→e3

• Proof is non-trivial
– Must hold for all e and any number of steps
– But easy given two helper theorems…

1. Progress: If . ├ e:τ, then e is a value or there exists an e2

such that e→e2

2. Preservation: If . ├ e:τ and e→e2, then . ├ e2:τ

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 9

Let’s prove it

Prove: If . ├ e:τ and e →*e2,
 then e2 is a value or e3 such that e2→e3, assuming:
1. If . ├ e:τ then e is a value or e2 such that e→e2
2. If . ├ e:τ and e→e2 then . ├ e2:τ

Prove something stronger: Also show . ├ e2:τ

Proof: By induction on n where e→*e2 in n steps
• Case n=0: immediate from progress (e=e2)
• Case n>0: then e3 such that…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 10

What’s the point

• Progress is what we care about
• But Preservation is the invariant that holds no matter how long

we have been running
• (Progress and Preservation) implies Soundness

• This is a very general/powerful recipe for showing you “don’t get
to a bad place”
– If invariant holds, then (a) you’re in a good place (progress)

and (b) anywhere you go is a good place (preservation)

• Details on next two slides less important…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 11

Forget a couple things?

Progress: If . ├ e:τ then e is a value or there exists
an e2 such that e→e2

Proof: Induction on height of derivation tree for . ├ e:τ
Rough idea:
• Trivial unless e is an application
• For e = e1 e2,

– If left or right not a value, induction
– If both values, e1 must be a lambda…

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 12

Forget a couple things?

Preservation: If . ├ e:τ and e→e2 then . ├ e2:τ

Also by induction on assumed typing derivation.

The trouble is when e→e’ involves substitution

– Requires another theorem

Substitution:
 If Γ,x:τ1 ├ e:τ and Γ ├ e1:τ1,
 then Γ ├ e{e1/x}:τ

Lecture 5 CSE P505 Autumn 2016 Dan Grossman 13

Our plan

• Simply-typed Lambda-Calculus
• Safety = (preservation + progress)
• Extensions (pairs, datatypes, recursion, etc.)
• Digression: static vs. dynamic typing
• Digression: Curry-Howard Isomorphism
• Subtyping
• Type Variables:

– Generics (), Abstract types (), Recursive types
• Type inference

Lecture 6 CSE P505 August 2016 Dan Grossman 14

Having laid the groundwork…

• So far:
– Our language (STLC) is tiny
– We used heavy-duty tools to define it

• Now:

– Add lots of things quickly
– Because our tools are all we need

• And each addition will have the same form…

Lecture 6 CSE P505 August 2016 Dan Grossman 15

A method to our madness

• The plan
– Add syntax
– Add new semantic rules
– Add new typing rules

• Such that we remain safe

• If our addition extends the syntax of types, then
– New values (of that type)
– Ways to make the new values

• called introduction forms
– Ways to use the new values

• called elimination forms

Lecture 6 CSE P505 August 2016 Dan Grossman 16

Let bindings (CBV)

e ::= … | let x = e1 in e2

(no new values or types)

 e1 → e1’
 ––
 let x = e1 in e2 → let x = e1’ in e2

 –––––––––––––––––––––––––––––––
 let x = v in e2 → e2{v/x}

 Γ ├ e1:τ1 Γ,x:τ1 ├ e2:τ2
 –––––––––––––––––––––––––––––––––
 Γ ├ let x = e1 in e2 : τ2

Lecture 6 CSE P505 August 2016 Dan Grossman 17

Let as sugar?

let is actually so much like lambda, we could use 2 other different
but equivalent semantics

2. let x = e1 in e2 is sugar (a different concrete way to
write the same abstract syntax) for (λx.e2) e1

3. Instead of rules on last slide, just use
 –––––––––––––––––––––––––––––––––
 let x = e1 in e2 → (λx.e2) e1

Note: In OCaml, let is not sugar for application because let is type-
 checked differently (type variables)

Lecture 6 CSE P505 August 2016 Dan Grossman 18

Booleans

e ::= … | tru | fls | e ? e : e
v ::= … | tru | fls
τ ::= … | bool

 e1 → e1’
–––––––––––––––––––––––––––––––
e1 ? e2 : e3 → e1’ ? e2 : e3

–––––––––––––––––––– ––––––––––––––––––––
tru ? e2 : e3 → e2 fls ? e2 : e3 → e3

 ––––––––––––– ––––––––––––––
 Γ├ tru:bool Γ├ fls:bool

 Γ├ e1:bool Γ├ e2:τ Γ├ e3:τ
 ––––––––––––––––––––––––––––––––
 Γ├ e1 ? e2 : e3 : τ

Lecture 6 CSE P505 August 2016 Dan Grossman 19

OCaml? Large-step?

• In Homework 3, you add conditionals, pairs, etc. to our
environment-based large-step interpreter

• Compared to last slide
– Different meta-language (cases rearranged)
– Large-step instead of small

• Large-step booleans with inference rules:

 –––––––– ––––––––
 tru tru fls fls

 e1 tru e2 v e1 fls e3 v
 ––––––––––––––– ––––––––––––––––
 e1 ? e2 : e3 v e1 ? e2 : e3 v

Lecture 6 CSE P505 August 2016 Dan Grossman 20

Pairs (CBV, left-to-right)

e ::= … | (e,e) | e.1 | e.2
v ::= … | (v,v)
τ ::= … | τ*τ

 e1→e1’ e2→e2’ e→e’ e→e’
–––––––––––––––––– ––––––––––––––– –––––––––– –––––––––
(e1,e2)→(e1’,e2) (v,e2)→(v,e2’) e.1→e’.1 e.2→e’.2

–––––––––––––––– ––––––––––––––––
(v1,v2).1 → v1 (v1,v2).2 → v2

 Γ├ e1:τ1 Γ├ e2:τ2 Γ├ e:τ1*τ2 Γ├ e:τ1*τ2
–––––––––––––––––––– –––––––––––– ––––––––––––
 Γ├(e1,e2):τ1*τ2 Γ├ e.1:τ1 Γ├ e.2:τ2

Lecture 6 CSE P505 August 2016 Dan Grossman 21

Toward Sums

• Next addition: sums (much like ML datatypes)

• Informal review of ML datatype basics

 type t = A of t1 | B of t2 | C of t3

– Introduction forms: constructor applied to expression
– Elimination forms: match e1 with pat -> exp …
– Typing: If e has type t1, then A e has type t …

Lecture 6 CSE P505 August 2016 Dan Grossman 22

Unlike ML, part 1

• ML datatypes do a lot at once
– Allow recursive types
– Introduce a new name for a type
– Allow type parameters
– Allow fancy pattern matching

• What we do will be simpler

– Skip recursive types [an orthogonal addition]
– Avoid names (a bit simpler in theory)
– Skip type parameters
– Only patterns of form A x and B x (rest is sugar)

Lecture 6 CSE P505 August 2016 Dan Grossman 23

Unlike ML, part 2

• What we add will also be different
– Only two constructors A and B
– All sum types use these constructors
– So A e can have any sum type allowed by e’s type
– No need to declare sum types in advance
– Like functions, will “guess types” in our rules

• This still helps explain what datatypes are

• After formalism, compare to C unions and OOP

Lecture 6 CSE P505 August 2016 Dan Grossman 24

The math (with type rules to come)

e ::= … | A e | B e | match e with A x -> e | B x -> e
v ::= … | A v | B v
τ ::= … | τ+τ

 e → e’ e → e’ e1 → e1’
––––––––– ––––––––– –––––––––––––––––––––––––––
A e → A e’ B e → B e’ match e1 with A x->e2 |B y -> e3
 → match e1’ with A x->e2 |B y -> e3

 ––
 match A v with A x->e2 | B y -> e3 → e2{v/x}

 ––
 match B v with A x->e2 | B y -> e3 → e3{v/y}

Lecture 6 CSE P505 August 2016 Dan Grossman 25

Low-level view

You can think of datatype values as “pairs”
• First component: A or B (or 0 or 1 if you prefer)
• Second component: “the data”
• e2 or e3 of match evaluated with “the data” in place of the

variable
• This is all like OCaml as in Lecture 1

• Example values of type int + (int -> int):

0 17 1

λx.
 x+y

[(“y”,6)]

Lecture 6 CSE P505 August 2016 Dan Grossman 26

Typing rules

• Key idea for datatype expression: “other can be anything”
• Key idea for matches: “branches need same type”

– Just like conditionals

 Γ├ e:τ1 Γ├ e:τ2
 –––––––––––––– –––––––––––––
 Γ├ A e : τ1+τ2 Γ├ B e : τ1+τ2

 Γ├ e1 : τ1+τ2 Γ,x:τ1├ e2 : τ Γ,y:τ2├ e3 : τ
 ––
 Γ├ match e1 with A x->e2 | B y -> e3 : τ

Lecture 6 CSE P505 August 2016 Dan Grossman 27

Compare to pairs, part 1

• “pairs and sums” is a big idea
– Languages should have both (in some form)
– Somehow pairs come across as simpler, but they’re really

“dual” (see Curry-Howard soon)
• Introduction forms:

– pairs: “need both”, sums: “need one”

Γ├ e1:τ1 Γ├ e2:τ2 Γ├ e:τ1 Γ├ e:τ2
–––––––––––––––––– –––––––––––– –––––––––––––
 Γ├ (e1,e2) : τ1*τ2 Γ├ A e : τ1+τ2 Γ├ B e : τ1+τ2

Lecture 6 CSE P505 August 2016 Dan Grossman 28

Compare to pairs, part 2

• Elimination forms
– pairs: “get either”, sums: “be prepared for either”

 Γ├ e:τ1*τ2 Γ├ e:τ1*τ2
 ––––––––––– ––––––––––––
 Γ├ e.1:τ1 Γ├ e.2:τ2

 Γ├ e1 : τ1+τ2 Γ,x:τ1├ e2 : τ Γ,y:τ2├ e3 : τ
 ––
 Γ├ match e1 with A x->e2 | B y->e3 : τ

Lecture 6 CSE P505 August 2016 Dan Grossman 29

Living with just pairs

• If stubborn you can cram sums into pairs (don’t!)
– Round-peg, square-hole
– Less efficient (dummy values)
– More error-prone (may use dummy values)
– Example: int + (int -> int) becomes

int * (int * (int -> int))

1 λx. λy.
x+y

[(“y”,6] 0

0 λx. x.

[] 17

Lecture 6 CSE P505 August 2016 Dan Grossman 30

Sums in other guises

type t = A of t1 | B of t2 | C of t3
match e with A x -> …

Meets C:
 struct t {
 enum {A, B, C} tag;
 union {t1 a; t2 b; t3 c;} data;
 };
… switch(e->tag){ case A: t1 x=e->data.a; …

– No static checking that tag is obeyed
– As fat as the fattest variant (avoidable with casts)

• Mutation costs us again!

– Some “modern progress” in Rust, Swift, …?

Lecture 6 CSE P505 August 2016 Dan Grossman 31

Sums in other guises

type t = A of t1 | B of t2 | C of t3
match e with A x -> …
Meets Java [C# similar]:
 abstract class t {abstract Object m();}
 class A extends t { t1 x; Object m(){…}}
 class B extends t { t2 x; Object m(){…}}
 class C extends t { t3 x; Object m(){…}}
 … e.m() …

– A new method for each match expression
– Supports orthogonal forms of extensibility

• New constructors vs. new operations over the dataype!

Lecture 6 CSE P505 August 2016 Dan Grossman 32

Where are we

• Have added let, bools, pairs, sums
• Could have added many other things
• Amazing fact:

– Even with everything we have added so far, every program
terminates!

– i.e., if .├ e:τ then there exists a value v such that
 e →* v

– Corollary: Our encoding of recursion won’t type-check
• To regain Turing-completeness, need explicit support for

recursion

Lecture 6 CSE P505 August 2016 Dan Grossman 33

Recursion

• Could add “fix e”, but most people find “letrec f x . e” more
intuitive

e ::= … | letrec f x . e
v ::= … | letrec f x . e
(no new types)

“Substitute argument like lambda & whole function for f”

 ––––––––––––––––––––––––––––––––––
 (letrec f x . e) v → (e{v/x}){(letrec f x . e) / f}

 Γ, f: τ1→ τ2, x:τ1 ├ e:τ2
 –––––––––––––––––––––––
 Γ├ letrec f x . e : τ1→ τ2

Lecture 6 CSE P505 August 2016 Dan Grossman 34

Our plan

• Simply-typed Lambda-Calculus
• Safety = (preservation + progress)
• Extensions (pairs, datatypes, recursion, etc.)
• Digression: static vs. dynamic typing
• Digression: Curry-Howard Isomorphism
• Subtyping
• Type Variables:

– Generics (), Abstract types ()
• Type inference

Lecture 6 CSE P505 August 2016 Dan Grossman 35

Static vs. dynamic typing

• First decide something is an error
– Examples: 3 + “hi”, function-call arity, redundant matches
– Examples: divide-by-zero, null-pointer dereference, bounds
– Soundness / completeness depends on what’s checked!

• Then decide when to prevent the error
– Example: At compile-time (static)
– Example: At run-time (dynamic)

• “Static vs. dynamic” can be discussed rationally!
– Most languages have some of both
– There are trade-offs based on facts

Lecture 6 CSE P505 August 2016 Dan Grossman 36

Basic benefits/limitations

Indisputable facts:

• Languages with static checks catch certain bugs without testing

– Earlier in the software-development cycle

• Impossible to catch exactly the buggy programs at compile-time
– Undecidability: even code reachability
– Context: Impossible to know how code will be used/called
– Application level: Algorithmic bugs remain

• No idea what program you’re trying to write

Lecture 6 CSE P505 August 2016 Dan Grossman 37

Eagerness

I prefer to acknowledge a continuum
– rather than “static vs. dynamic” (2 most common points)

Example: divide-by-zero and code 3/0
• Keystroke time: Disallow it in the editor
• Compile-time: reject if code is reachable

– maybe on a dead branch
• Link-time: reject if code is reachable

– maybe function is never used
• Run-time: reject if code executed

– maybe branch is never taken
• Later: reject only if result is used to index an array

– cf. floating-point +inf.0!

Inherent Trade-off

“Catching a bug before it matters”

is in inherent tension with
“Don’t report a bug that might not matter”

• Corollary: Can always wish for a slightly better trade-off for a

particular code-base at a particular point in time

Lecture 6 CSE P505 August 2016 Dan Grossman 38

Lecture 6 CSE P505 August 2016 Dan Grossman 39

Exploring some arguments

1. (a) “Dynamic typing is more convenient”
• Avoids “dinky little sum types”

 (* if OCaml were dynamically typed *)
 let f x = if x>0 then 2*x else false
 …
 let ans = (f 19) + 4
versus
 (* actual OCaml *)
 type t = A of int | B of bool
 let f x = if x>0 then A(2*x) else B false
 …
 let ans = match f 19 with A x -> x + 4
 | _ -> raise Failure

Lecture 6 CSE P505 August 2016 Dan Grossman 40

Exploring some arguments

1. (b) “Static typing is more convenient”
– Harder to write a library defensively that raises errors before

it’s too late or client gets a bizarre failure message

 (* if OCaml were dynamically typed *)
 let cube x = if int? x
 then x*x*x
 else raise Failure
versus
 (* actual OCaml *)
 let cube x = x*x*x

Lecture 6 CSE P505 August 2016 Dan Grossman 41

Exploring some arguments

2. Static typing does/doesn’t prevent useful programs
Overly restrictive type systems certainly can (cf. Pascal arrays)
Sum types give you as much flexibility as you want:
 type anything =
 Int of int
 | Bool of bool
 | Fun of anything -> anything
 | Pair of anything * anything
 | …
Viewed this way, dynamic typing is static typing with one type and

implicit tag addition/checking/removal
– Easy to compile dynamic typing into OCaml this way
– More painful by hand (constructors and matches everywhere)

Exploring some arguments

3. (a) Static catches bugs earlier
– As soon as compiled
– Whatever is checked need not be tested for
– Programmers can “lean on the the type-checker”

Example: currying versus tupling:
 (* does not type-check *)
 let pow x y = if y=0
 then 1
 else x * pow (x,y-1)

Lecture 6 CSE P505 August 2016 Dan Grossman 42

Exploring some arguments

3. (b) But static often catches only “easy” bugs
– So you still have to test
– And any decent test-suite will catch the “easy” bugs too

Example: still wrong even after fixing currying vs. tupling
 (* does not type-check and wrong algorithm *)
 let pow x y = if y=0
 then 1
 else x + pow (x,y-1)

Lecture 6 CSE P505 August 2016 Dan Grossman 43 Lecture 6 CSE P505 August 2016 Dan Grossman 44

Exploring some arguments

4. (a) “Dynamic typing better for code evolution”

Imagine changing: let cube x = x*x*x

To: type t = I of int | S of string
 let cube x = match x with I i -> i*i*i
 | S s -> s^s^s

– Static: Must change all existing callers

Dynamic: No change to existing callers…
 let cube x = if int? x then x*x*x
 else x^x^x

Lecture 6 CSE P505 August 2016 Dan Grossman 45

Exploring some arguments

4. (b) “Static typing better for code evolution”

Imagine changing the return type instead of the argument type:
 let cube x = if x > 0 then I (x*x*x)
 else S "hi"

• Static: Type-checker gives you a full to-do list

– cf. Adding a new constructor if you avoid wildcard patterns

• Dynamic: No change to existing callers; failures at runtime
 let cube x = if x > 0 then x*x*x
 else "hi"

Lecture 6 CSE P505 August 2016 Dan Grossman 46

Exploring some arguments

5. Types make code reuse easier/harder

• Dynamic:
– Sound static typing always means some code could be

reused more if only the type-checker would allow it
– By using the same data structures for everything (e.g.,

lists), you can reuse lots of libraries

• Static:
– Using separate types catches bugs and enforces

abstractions (don’t accidentally confuse two lists)
– Advanced types can provide enough flexibility in practice

Whether to encode with an existing type and use libraries or make
a new type is a key design trade-off

Lecture 6 CSE P505 August 2016 Dan Grossman 47

Exploring some arguments

6. Types make programs slower/faster

• Static
– Faster and smaller because programmer controls where

tag tests occur and which tags are actually stored
• Example: “Only when using datatypes”

• Dynamic:

– Faster because don’t have to code around the type system
– Optimizer can remove [some] unnecessary tag tests [and

tends to do better in inner loops]

Exploring some arguments

7. (a) Dynamic better for prototyping

Early on, you may not know what cases you need in datatypes and
functions

– But static typing disallows code without having all cases;
dynamic lets incomplete programs run

– So you make premature commitments to data structures
– And end up writing code to appease the type-checker that

you later throw away
• Particularly frustrating while prototyping

Lecture 6 CSE P505 August 2016 Dan Grossman 48

Exploring some arguments

7. (b) Static better for prototyping

What better way to document your evolving decisions on data
structures and code-cases than with the type system?

– New, evolving code most likely to make inconsistent
assumptions

Easy to put in temporary stubs as necessary, such as
 | _ -> raise Unimplemented

Lecture 6 CSE P505 August 2016 Dan Grossman 49 Lecture 6 CSE P505 August 2016 Dan Grossman 50

Our plan

• Simply-typed Lambda-Calculus
• Safety = (preservation + progress)
• Extensions (pairs, datatypes, recursion, etc.)
• Digression: static vs. dynamic typing
• Digression: Curry-Howard Isomorphism
• Subtyping
• Type Variables:

– Generics (), Abstract types (), Recursive types
• Type inference

Lecture 6 CSE P505 August 2016 Dan Grossman 51

Curry-Howard Isomorphism

• What we did
– Define a programming language
– Define a type system to rule out programs we don’t want

• What logicians do
– Define a logic (a way to state propositions)

• E.g.,: f ::= p | f or f | f and f | f -> f
– Define a proof system (a [sound] way to prove propositions)

• It turns out we did that too!

• Slogans:
– “Propositions are Types”
– “Proofs are Programs”

Lecture 6 CSE P505 August 2016 Dan Grossman 52

A funny STLC

• Let’s take the explicitly typed STLC with:
– Any number of base types b1, b2, …
– pairs
– sums
– no constants (can add one or more if you want)

Expressions: e ::= x | λx:τ. e | e e | (e,e) | e.1 | e.2
 | A e | B e | match e with A x->e |B x->e
Types: τ ::= b1|b2|… | τ→ τ | τ*τ | τ+τ

Even without constants, plenty of terms type-check with Γ = .

Lecture 6 CSE P505 August 2016 Dan Grossman 53

Example programs

λx:b17. x

has type

b17 → b17

Lecture 6 CSE P505 August 2016 Dan Grossman 54

Example programs

λx:b1. λf:b1→b2. f x

has type

b1 → (b1 → b2) → b2

Lecture 6 CSE P505 August 2016 Dan Grossman 55

Example programs

λx:b1→b2→b3. λy:b2. λz:b1. x z y

has type

(b1 → b2 → b3) → b2 → b1 → b3

Lecture 6 CSE P505 August 2016 Dan Grossman 56

Example programs

λx:b1. (A(x), A(x))

has type

b1 → ((b1+b7) * (b1+b4))

Lecture 6 CSE P505 August 2016 Dan Grossman 57

Example programs

λf:b1→b3. λg:b2→b3. λz:b1+b2.
 (match z with A x. f x | B x. g x)

has type

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

Lecture 6 CSE P505 August 2016 Dan Grossman 58

Example programs

λx:b1*b2. λy:b3. ((y,x.1),x.2)

has type

(b1*b2) → b3 → ((b3*b1)*b2)

Lecture 6 CSE P505 August 2016 Dan Grossman 59

Empty and nonempty types

So we have types for which there are closed values:
 b17 → b17
 b1 → (b1 → b2) → b2
 (b1 → b2 → b3) → b2 → b1 → b3
 b1 → ((b1+b7) * (b1+b4))
 (b1 → b3) → (b2 → b3) → (b1 + b2) → b3
 (b1*b2) → b3 → ((b3*b1)*b2)

But there are also many types for which there are no closed values:
b1 b1→b2 b1+(b1→b2) b1→(b2→b1)→b2

And “I” have a “secret” way of knowing which types have values
– Let me show you propositional logic…

Lecture 6 CSE P505 August 2016 Dan Grossman 60

Propositional Logic

 Γ├ p1 Γ├ p2 Γ├ p1*p2 Γ├ p1*p2
––––––––––––––– ––––––––––– –––––––––
 Γ├ p1*p2 Γ├ p1 Γ├ p2

 Γ├ p1 Γ├ p2 Γ├ p1+p2 Γ,p1├p3 Γ,p2├p3
 ––––––––– ––––––––– –––––––––––––––––––––––––––
 Γ├ p1+p2 Γ├ p1+p2 Γ├ p3

 p in Γ Γ,p1├p2 Γ├ p1→p2 Γ├ p1
––––––––– ––––––––––– –––––––––––––––––
 Γ├ p Γ├ p1→ p2 Γ├ p2

With → for implies, + for inclusive-or and * for and:
p ::= p1 | p2 | … | p→ p | p*p | p+p
Γ ::= . | Γ,p Γ├ p

Lecture 6 CSE P505 August 2016 Dan Grossman 61

Guess what!!!

That’s exactly our type system, just:
• Erasing terms
• Changing every τ to a p

So our type system is a proof system for propositional logic
• Function-call rule is modus ponens
• Function-definition rule is implication-introduction
• Variable-lookup rule is assumption
• e.1 and e.2 rules are and-elimination
• …

Lecture 6 CSE P505 August 2016 Dan Grossman 62

Curry-Howard Isomorphism

• Given a closed term that type-checks, take the typing derivation,
erase the terms, and have a propositional-logic proof

• Given a propositional-logic proof of a formula, there exists a
closed lambda-calculus term with that formula for its type (almost)

• A term that type-checks is a proof – it tells you exactly how to
derive the logic formula corresponding to its type

• Lambdas are no more or less made up than logical implication!
– STLC with pairs and sums is [constructive] propositional logic

• Let’s revisit our examples under the logical interpretation…

Lecture 6 CSE P505 August 2016 Dan Grossman 63

Example programs

λx:b17. x

is a proof that

b17 → b17

Lecture 6 CSE P505 August 2016 Dan Grossman 64

Example programs

λx:b1. λf:b1→b2. f x

is a proof that

b1 → (b1 → b2) → b2

Lecture 6 CSE P505 August 2016 Dan Grossman 65

Example programs

λx:b1→b2→b3. λy:b2. λz:b1. x z y

is a proof that

(b1 → b2 → b3) → b2 → b1 → b3

Lecture 6 CSE P505 August 2016 Dan Grossman 66

Example programs

λx:b1. (A(x), A(x))

is a proof that

b1 → ((b1+b7) * (b1+b4))

Lecture 6 CSE P505 August 2016 Dan Grossman 67

Example programs

λf:b1→b3. λg:b2→b3. λz:b1+b2.
 (match z with A x. f x | B x. g x)

is a proof that

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

Lecture 6 CSE P505 August 2016 Dan Grossman 68

Example programs

λx:b1*b2. λy:b3. ((y,x.1),x.2)

is a proof that

(b1*b2) → b3 → ((b3*b1)*b2)

Lecture 6 CSE P505 August 2016 Dan Grossman 69

Why care?

• Makes me glad I’m not a dog

• Don’t think of logic and computing as distinct fields

• Thinking “the other way” can help you debug interfaces

• Type systems are not ad hoc piles of rules!

STLC is a sound proof system for propositional logic

– But it’s not quite complete…

Lecture 6 CSE P505 August 2016 Dan Grossman 70

Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

–––––––––––––––
Γ├ p1+(p1→p2)

Think “p or not p” or double negation (we don’t have a not)

Logics without this rule (or anything equivalent) are called
constructive. They’re useful because proofs “know how the world
is” and therefore “are executable.”

Our match rule let’s us “branch on possibilities”, but using it

requires knowing which possibility holds [or that both do]:

 Γ├ p1+p2 Γ,p1├p3 Γ,p2├p3
 –––––––––––––––––––––––––––
 Γ├ p3

Lecture 6 CSE P505 August 2016 Dan Grossman 71

Example classical proof

Theorem: I can always wake up at 9 and be at work by 10.
Proof: If it’s a weekday, I can take a bus that leaves at 9:30. If it is

not a weekday, traffic is light and I can drive. Since it is a
weekday or it is not a weekday, I can be at work by 10.

Problem: If you wake up and don’t know if it’s a weekday, this proof

does not let you construct a plan to get to work by 10.

In constructive logic, if a theorem is proven, we have a plan/program

– And you can still prove, “If I know whether or not it is a
weekday, then I can wake up at 9 and be at work by 10”

Lecture 6 CSE P505 August 2016 Dan Grossman 72

What about recursion

• letrec lets you prove anything
– (that’s bad – an “inconsistent logic”)

 Γ,f:τ1→ τ2,x:τ1 ├ e:τ2
 ––––––––––––––––––––––––––––––––
 Γ├ letrec f x . e : τ1→τ2

• Only terminating programs are proofs!

• Related: In ML, a function of type int → ’a never returns

normally

Lecture 6 CSE P505 August 2016 Dan Grossman 73

Last word on Curry-Howard

• It’s not just STLC and constructive propositional logic
– Every logic has a corresponding typed lambda calculus and

vice-versa
– Generics correspond to universal quantification

• If you remember one thing: the typing rule for function

application is implication-elimination (a.k.a. modus ponens)

