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Our plan 

• Simply-typed Lambda-Calculus 
• Safety = (preservation + progress) 
• Extensions (pairs, datatypes, recursion, etc.) 
• Digression: static vs. dynamic typing 
• Digression: Curry-Howard Isomorphism 
• Subtyping 
• Type Variables:  

– Generics ( ), Abstract types ( )  
• Type inference 
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STLC in one slide 
Expressions:   e ::= x | λx. e | e e | c 
     Values:   v ::= λx. e | c 
         Types:   τ ::= int | τ→ τ 
     Contexts:   Γ ::= . | Γ, x : τ 

   e1 → e1’           e2 → e2’ 
–––––––––––––    –––––––––––     ––––––––––––––––– 
e1 e2 → e1’ e2  v e2 → v e2’   (λx.e) v → e{v/x}          

  –––––––––––        –––––––––––– 
   Γ ├ c : int     Γ ├ x : Γ(x)  
 
 

       Γ,x:τ1 ├  e:τ2            Γ ├ e1:τ1→ τ2  Γ ├ e2:τ1 
––––––––––––––––––   –––––––––––––––––––––––– 

   Γ ├ (λx.e):τ1→ τ2       Γ ├ e1 e2:τ2      

 

e→e’ 
  

 

Γ ├ e:τ 
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Rule-by-rule 

• Constant rule: context irrelevant 
• Variable rule: lookup (no instantiation if x not in Γ) 
• Application rule: “yeah, that makes sense” 
• Function rule the interesting one… 

  –––––––––––        –––––––––––– 
   Γ ├ c : int     Γ ├ x : Γ(x)  
 
 

       Γ,x:τ1 ├  e:τ2            Γ ├ e1:τ1→ τ2  Γ ├ e2:τ1 
 ––––––––––––––––––      –––––––––––––––––––––––– 
   Γ ├ (λx.e):τ1→ τ2       Γ ├ e1 e2:τ2      
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The function rule 

• Where did τ1 come from? 
– Our rule “inferred” or “guessed” it 
– To be syntax-directed, change λx.e to λx:τ.e and use 

that τ 
• If we think of Γ as a partial function, we need x not already in it 

(implicit systematic renaming [alpha-conversion] allows) 
– Or can think of it as shadowing 

         Γ,x:τ1 ├  e:τ2 
 –––––––––––––––––– 
  Γ ├ (λx.e):τ1→ τ2 
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Our plan 

• Simply-typed Lambda-Calculus 
• Safety = (preservation + progress) 
• Extensions (pairs, datatypes, recursion, etc.) 
• Digression: static vs. dynamic typing 
• Digression: Curry-Howard Isomorphism 
• Subtyping 
• Type Variables:  

– Generics ( ), Abstract types ( ), Recursive types 
• Type inference 
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Is it “right”? 

• Can define any type system we want 
 

• What we defined is sound and incomplete 
 

• Can prove incomplete with one example 
– Every variable has exactly one simple type 
– Example (doesn’t get stuck, doesn’t typecheck) 
  (λx. (x (λy.y)) (x 3)) (λz.z) 
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Sound 

• Statement of soundness theorem: 
 If   . ├ e:τ and e→*e2,  
       then e2 is a value or there exists an e3 such that e2→e3 
 

• Proof is non-trivial 
– Must hold for all e and any number of steps 
– But easy given two helper theorems… 

 
1. Progress: If   . ├ e:τ, then e is a value or there exists an e2 

such that e→e2 
 

2. Preservation: If . ├ e:τ and e→e2,  then . ├ e2:τ 
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Let’s prove it 

Prove: If   . ├ e:τ and e →*e2,  
            then e2 is a value or  e3 such that e2→e3, assuming: 
1. If   . ├ e:τ then e is a value or  e2 such that e→e2 
2. If . ├ e:τ and e→e2 then . ├ e2:τ 
 
Prove something stronger: Also show . ├ e2:τ 
 

Proof: By induction on n where e→*e2 in n steps 
• Case n=0: immediate from progress (e=e2) 
• Case n>0: then e3 such that… 
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What’s the point 

• Progress is what we care about 
• But Preservation is the invariant that holds no matter how long 

we have been running 
• (Progress and Preservation) implies Soundness 

 

• This is a very general/powerful recipe for showing you “don’t get 
to a bad place” 
– If invariant holds, then (a) you’re in a good place (progress) 

and (b) anywhere you go is a good place (preservation) 
 

• Details on next two slides less important… 
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Forget a couple things? 

Progress: If   . ├ e:τ then e is a value or there exists 
an e2 such that e→e2 
 
Proof: Induction on height of derivation tree for . ├ e:τ 
Rough idea: 
• Trivial unless e is an application 
• For e = e1 e2,  

– If left or right not a value, induction 
– If both values, e1 must be a lambda… 
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Forget a couple things? 

Preservation: If . ├ e:τ and e→e2 then . ├ e2:τ 
 
Also by induction on assumed typing derivation. 
 
The trouble is when e→e’ involves substitution  

– Requires another theorem 
 
Substitution:  
 If Γ,x:τ1 ├  e:τ and Γ ├  e1:τ1,  
 then Γ ├  e{e1/x}:τ  
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Our plan 

• Simply-typed Lambda-Calculus 
• Safety = (preservation + progress) 
• Extensions (pairs, datatypes, recursion, etc.) 
• Digression: static vs. dynamic typing 
• Digression: Curry-Howard Isomorphism 
• Subtyping 
• Type Variables:  

– Generics ( ), Abstract types ( ), Recursive types 
• Type inference 
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Having laid the groundwork… 

• So far: 
– Our language (STLC) is tiny 
– We used heavy-duty tools to define it 

 
• Now: 

– Add lots of things quickly 
– Because our tools are all we need 

 
• And each addition will have the same form… 
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A method to our madness 

• The plan 
– Add syntax 
– Add new semantic rules 
– Add new typing rules 

• Such that we remain safe 
 

• If our addition extends the syntax of types, then 
– New values (of that type) 
– Ways to make the new values 

• called introduction forms 
– Ways to use the new values 

• called elimination forms 
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Let bindings (CBV) 

e ::= … | let x = e1 in e2 
 

(no new values or types) 
 
 
                e1 →  e1’ 
     –––––––––––––––––––––––––––––––––––––––– 
  let x = e1 in e2 → let x = e1’ in e2 

 
       
        ––––––––––––––––––––––––––––––– 
        let x = v in e2 → e2{v/x} 
 
    Γ ├ e1:τ1     Γ,x:τ1 ├ e2:τ2 
    ––––––––––––––––––––––––––––––––– 
      Γ ├  let x = e1 in e2  : τ2 
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Let as sugar? 

let is actually so much like lambda, we could use 2 other different 
but equivalent semantics 
 

2.  let x = e1 in e2 is sugar (a different concrete way to 
write the same abstract syntax) for (λx.e2) e1 
 

3. Instead of rules on last slide, just use 
          ––––––––––––––––––––––––––––––––– 
           let x = e1 in e2 → (λx.e2) e1 
 

Note: In OCaml, let is not sugar for application because let is type-   
    checked differently (type variables) 
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Booleans 

e  ::= … | tru | fls | e ? e : e 
v  ::= … | tru | fls 
τ  ::= … | bool 
 
                      e1 → e1’ 
––––––––––––––––––––––––––––––– 
e1 ? e2 : e3 → e1’ ? e2 : e3 
 
––––––––––––––––––––           –––––––––––––––––––– 
tru ? e2 : e3 → e2      fls ? e2 : e3 → e3  
 
  –––––––––––––           –––––––––––––– 
   Γ├ tru:bool      Γ├ fls:bool 
 
  Γ├ e1:bool   Γ├ e2:τ   Γ├ e3:τ  
  –––––––––––––––––––––––––––––––– 
    Γ├ e1 ? e2 : e3 : τ 
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OCaml? Large-step? 

• In Homework 3, you add conditionals, pairs, etc. to our 
environment-based large-step interpreter 

• Compared to last slide 
– Different meta-language (cases rearranged) 
– Large-step instead of small 

• Large-step booleans with inference rules: 
 

       ––––––––      –––––––– 
               tru  tru          fls  fls 
 
     e1  tru    e2  v              e1  fls    e3  v 
    –––––––––––––––            ––––––––––––––––  
          e1 ? e2 : e3  v                 e1 ? e2 : e3  v 
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Pairs (CBV, left-to-right) 

e  ::= … | (e,e) | e.1 | e.2 
v  ::= … | (v,v) 
τ  ::= … | τ*τ 
 
 
         e1→e1’            e2→e2’       e→e’       e→e’ 
––––––––––––––––––   –––––––––––––––  ––––––––––    ––––––––– 
(e1,e2)→(e1’,e2)  (v,e2)→(v,e2’) e.1→e’.1   e.2→e’.2 
 
––––––––––––––––             –––––––––––––––– 
(v1,v2).1 → v1       (v1,v2).2 → v2 
 
 Γ├ e1:τ1  Γ├ e2:τ2    Γ├ e:τ1*τ2     Γ├ e:τ1*τ2  
––––––––––––––––––––     ––––––––––––       –––––––––––– 
  Γ├(e1,e2):τ1*τ2     Γ├ e.1:τ1      Γ├ e.2:τ2 
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Toward Sums 

• Next addition: sums (much like ML datatypes) 
 
 

• Informal review of ML datatype basics 
 
 type t = A of t1 | B of t2 | C of t3 

 
– Introduction forms: constructor applied to expression 
– Elimination forms: match e1 with pat -> exp … 
– Typing: If e has type t1, then A e has type t … 
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Unlike ML, part 1 

• ML datatypes do a lot at once 
– Allow recursive types 
– Introduce a new name for a type 
– Allow type parameters 
– Allow fancy pattern matching 

 
• What we do will be simpler  

– Skip recursive types [an orthogonal addition] 
– Avoid names (a bit simpler in theory) 
– Skip type parameters 
– Only patterns of form A x  and B x (rest is sugar) 
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Unlike ML, part 2 

• What we add will also be different 
– Only two constructors A and B 
– All sum types use these constructors 
– So A e can have any sum type allowed by e’s type 
– No need to declare sum types in advance 
– Like functions, will “guess types” in our rules 

 
• This still helps explain what datatypes are 

 
• After formalism, compare to C unions and OOP 
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The math (with type rules to come) 

e  ::= … | A e | B e | match e with A x -> e | B x -> e 
v  ::= … | A v | B v 
τ ::= … | τ+τ 
 
    e →  e’           e →  e’                               e1 →  e1’ 
–––––––––     –––––––––        ––––––––––––––––––––––––––– 
A e → A e’      B e → B e’        match e1 with A x->e2 |B y -> e3 
                                                 →   match e1’ with A x->e2 |B y -> e3 
 
    –––––––––––––––––––––––––––––––––––––––– 
     match A v with A x->e2 | B y -> e3   →   e2{v/x} 
 
    –––––––––––––––––––––––––––––––––––––––– 
     match B v with A x->e2 | B y -> e3   →   e3{v/y} 
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Low-level view 

You can think of datatype values as “pairs” 
• First component: A or B (or 0 or 1 if you prefer) 
• Second component: “the data” 
• e2 or e3 of match evaluated with “the data” in place of the 

variable 
• This is all like OCaml as in Lecture 1 

 

• Example values of type int + (int -> int): 
 

0 17 1 

λx. 
    x+y 

[(“y”,6)] 
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Typing rules 

• Key idea for datatype expression: “other can be anything” 
• Key idea for matches: “branches need same type” 

– Just like conditionals 
 

         Γ├  e:τ1                    Γ├  e:τ2   
    ––––––––––––––        ––––––––––––– 
     Γ├ A e : τ1+τ2     Γ├ B e : τ1+τ2 
 
 
  Γ├ e1 : τ1+τ2  Γ,x:τ1├ e2 : τ  Γ,y:τ2├ e3 : τ 
   –––––––––––––––––––––––––––––––––––––––– 
         Γ├ match e1 with A x->e2 | B y -> e3 : τ 
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Compare to pairs, part 1 

• “pairs  and sums” is a big idea 
– Languages should have both (in some form) 
– Somehow pairs come across as simpler, but they’re really 

“dual” (see Curry-Howard soon) 
• Introduction forms:  

– pairs: “need both”, sums: “need one” 
 

Γ├  e1:τ1 Γ├  e2:τ2       Γ├  e:τ1                  Γ├  e:τ2  
––––––––––––––––––      ––––––––––––       ––––––––––––– 
  Γ├ (e1,e2) : τ1*τ2          Γ├ A e : τ1+τ2   Γ├ B e : τ1+τ2 
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Compare to pairs, part 2 

• Elimination forms 
– pairs: “get either”, sums: “be prepared for either” 

 
 Γ├  e:τ1*τ2    Γ├  e:τ1*τ2  
 –––––––––––      –––––––––––– 
 Γ├  e.1:τ1      Γ├  e.2:τ2 
 
 
   Γ├ e1 : τ1+τ2   Γ,x:τ1├ e2 : τ  Γ,y:τ2├ e3 : τ 
    –––––––––––––––––––––––––––––––––––––––– 
             Γ├ match e1 with A x->e2 | B y->e3 : τ 
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Living with just pairs 

• If stubborn you can cram sums into pairs (don’t!) 
– Round-peg, square-hole 
– Less efficient (dummy values) 
– More error-prone (may use dummy values) 
– Example: int + (int -> int) becomes  

int * (int * (int -> int)) 

1 λx. λy. 
x+y 

[(“y”,6] 0 

0 λx. x. 
 

[ ] 17 
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Sums in other guises 

type t = A of t1 | B of t2 | C of t3 
match e with A x -> … 
 

Meets C: 
  struct t { 
   enum  {A, B, C}            tag; 
 union {t1 a; t2 b; t3 c;} data; 
 }; 
… switch(e->tag){ case A: t1 x=e->data.a; … 

 

– No static checking that tag is obeyed 
– As fat as the fattest variant (avoidable with casts) 

• Mutation costs us again! 
 

– Some “modern progress” in Rust, Swift, …? 
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Sums in other guises 

type t = A of t1 | B of t2 | C of t3 
match e with A x -> … 
Meets Java [C# similar]: 
 abstract class t {abstract Object m();} 
 class A extends t { t1 x; Object m(){…}} 
 class B extends t { t2 x; Object m(){…}} 
 class C extends t { t3 x; Object m(){…}} 
 … e.m() … 

 
– A new method for each match expression 
– Supports orthogonal forms of extensibility  

• New constructors vs. new operations over the dataype! 
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Where are we 

• Have added let, bools, pairs, sums 
• Could have added many other things 
• Amazing fact: 

– Even with everything we have added so far, every program 
terminates! 

– i.e., if .├  e:τ then there exists a value v such that  
   e →* v 

– Corollary: Our encoding of recursion won’t type-check 
• To regain Turing-completeness, need explicit support for 

recursion 
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Recursion 

• Could add “fix e”, but most people find “letrec f x . e” more 
intuitive 
 

e  ::= … | letrec f x . e 
v  ::= … | letrec f x . e 
(no new types) 
 
 

“Substitute argument like lambda & whole function for f” 
 
  ––––––––––––––––––––––––––––––––––   
  (letrec f x . e) v → (e{v/x}){(letrec f x . e) / f} 
 
    Γ, f: τ1→ τ2, x:τ1 ├  e:τ2   
   ––––––––––––––––––––––– 
      Γ├ letrec f x . e : τ1→ τ2 
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Our plan 

• Simply-typed Lambda-Calculus 
• Safety = (preservation + progress) 
• Extensions (pairs, datatypes, recursion, etc.) 
• Digression: static vs. dynamic typing 
• Digression: Curry-Howard Isomorphism 
• Subtyping 
• Type Variables:  

– Generics ( ), Abstract types ( )  
• Type inference 
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Static vs. dynamic typing 

• First decide something is an error 
– Examples: 3 + “hi”, function-call arity, redundant matches 
– Examples: divide-by-zero, null-pointer dereference, bounds 
– Soundness / completeness depends on what’s checked! 

 

• Then decide when to prevent the error 
– Example: At compile-time (static) 
– Example: At run-time (dynamic) 

 

• “Static vs. dynamic” can be discussed rationally! 
– Most languages have some of both 
– There are trade-offs based on facts 
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Basic benefits/limitations 

Indisputable facts: 
 
• Languages with static checks catch certain bugs without testing 

– Earlier in the software-development cycle 
 

• Impossible to catch exactly the buggy programs at compile-time 
– Undecidability: even code reachability 
– Context: Impossible to know how code will be used/called 
– Application level: Algorithmic bugs remain 

• No idea what program you’re trying to write 
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Eagerness 

I prefer to acknowledge a continuum 
–  rather than “static vs. dynamic” (2 most common points) 

 
Example: divide-by-zero and code 3/0 
• Keystroke time: Disallow it in the editor 
• Compile-time: reject if code is reachable  

– maybe on a dead branch 
• Link-time: reject if code is reachable 

– maybe function is never used 
• Run-time: reject if code executed 

– maybe branch is never taken 
• Later: reject only if result is used to index an array 

– cf. floating-point +inf.0! 
 

Inherent Trade-off 

 
“Catching a bug before it matters”  

is in inherent tension with  
“Don’t report a bug that might not matter” 

 
• Corollary: Can always wish for a slightly better trade-off for a 

particular code-base at a particular point in time 
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Exploring some arguments 

1. (a) “Dynamic typing is more convenient” 
• Avoids “dinky little sum types” 

      (* if OCaml were dynamically typed *) 
 let f x = if x>0 then 2*x else false 
   … 
   let ans = (f 19) + 4 
versus 
   (* actual OCaml *) 
 type t = A of int | B of bool 
 let f x = if x>0 then A(2*x) else B false 
   … 
   let ans = match f 19 with A x -> x + 4  
                           | _   -> raise Failure 
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Exploring some arguments 

1. (b) “Static typing is more convenient” 
– Harder to write a library defensively that raises errors before 

it’s too late or client gets a bizarre failure message 
 

      (* if OCaml were dynamically typed *) 
 let cube x = if int? x  
                then x*x*x  
                else raise Failure 
versus 
   (* actual OCaml *) 
   let cube x = x*x*x  
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Exploring some arguments 

2. Static typing does/doesn’t prevent useful programs 
Overly restrictive type systems certainly can (cf. Pascal arrays) 
Sum types give you as much flexibility as you want: 
 type anything =  
       Int  of int  
     | Bool of bool 
     | Fun  of anything -> anything 
     | Pair of anything * anything 
     | … 
Viewed this way, dynamic typing is static typing with one type and 

implicit tag addition/checking/removal 
– Easy to compile dynamic typing into OCaml this way 
– More painful by hand (constructors and matches everywhere) 

Exploring some arguments 

3.  (a) Static catches bugs earlier 
– As soon as compiled 
– Whatever is checked need not be tested for 
– Programmers can “lean on the the type-checker” 

 
Example: currying versus tupling: 
   (* does not type-check *) 
 let pow x y = if y=0  
                 then 1  
                 else x * pow (x,y-1) 
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Exploring some arguments 

3.  (b) But static often catches only “easy” bugs 
– So you still have to test 
– And any decent test-suite will catch the “easy” bugs too 

 
Example: still wrong even after fixing currying vs. tupling 
   (* does not type-check and wrong algorithm *) 
 let pow x y = if y=0  
                 then 1  
                 else x + pow (x,y-1) 
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Exploring some arguments 

4.  (a) “Dynamic typing better for code evolution” 
 

Imagine changing: let cube x = x*x*x  
   
To:  type t = I of int | S of string 
    let cube x = match x with I i -> i*i*i  
                            | S s -> s^s^s 

– Static: Must change all existing callers 
 

Dynamic: No change to existing callers… 
   let cube x = if int? x then x*x*x 
                          else x^x^x 
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Exploring some arguments 

4. (b) “Static typing better for code evolution” 
 

Imagine changing the return type instead of the argument type: 
        let cube x = if x > 0 then I (x*x*x)  
                          else S "hi" 
   
• Static: Type-checker gives you a full to-do list 

– cf. Adding a new constructor if you avoid wildcard patterns 
 

• Dynamic: No change to existing callers; failures at runtime 
   let cube x = if x > 0 then x*x*x 
                         else "hi" 
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Exploring some arguments 

5. Types make code reuse easier/harder 
 

• Dynamic:  
– Sound static typing always means some code could be 

reused more if only the type-checker would allow it 
– By using the same data structures for everything (e.g., 

lists), you can reuse lots of libraries 
 

• Static:  
– Using separate types catches bugs and enforces 

abstractions (don’t accidentally confuse two lists) 
– Advanced types can provide enough flexibility in practice 

 

Whether to encode with an existing type and use libraries or make 
a new type is a key design trade-off 
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Exploring some arguments 

6. Types make programs slower/faster 
 

• Static 
– Faster and smaller because programmer controls where 

tag tests occur and which tags are actually stored 
• Example: “Only when using datatypes” 

 
• Dynamic: 

– Faster because don’t have to code around the type system 
– Optimizer can remove [some] unnecessary tag tests [and 

tends to do better in inner loops] 
 

Exploring some arguments 

7. (a) Dynamic better for prototyping 
 

Early on, you may not know what cases you need in datatypes and 
functions 

– But static typing disallows code without having all cases; 
dynamic lets incomplete programs run 

– So you make premature commitments to data structures 
– And end up writing code to appease the type-checker that 

you later throw away 
• Particularly frustrating while prototyping 
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Exploring some arguments 

7.  (b)  Static better for prototyping 
 
What better way to document your evolving decisions on data 
structures and code-cases than with the type system? 

– New, evolving code most likely to make inconsistent 
assumptions 
 

Easy to put in temporary stubs as necessary, such as 
    | _ -> raise Unimplemented 
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Our plan 

• Simply-typed Lambda-Calculus 
• Safety = (preservation + progress) 
• Extensions (pairs, datatypes, recursion, etc.) 
• Digression: static vs. dynamic typing 
• Digression: Curry-Howard Isomorphism 
• Subtyping 
• Type Variables:  

– Generics ( ), Abstract types ( ), Recursive types 
• Type inference 
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Curry-Howard Isomorphism 

• What we did 
– Define a programming language 
– Define a type system to rule out programs we don’t want 

• What logicians do 
– Define a logic (a way to state propositions) 

• E.g.,: f ::= p | f or f | f and f | f -> f 
– Define a proof system (a [sound] way to prove propositions) 

• It turns out we did that too! 
 

• Slogans: 
– “Propositions are Types” 
– “Proofs are Programs” 
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A funny STLC 

• Let’s take the explicitly typed STLC with: 
– Any number of base types b1, b2, … 
– pairs  
– sums 
– no constants (can add one or more if you want) 

 
Expressions:  e ::= x | λx:τ. e | e e | (e,e) | e.1 | e.2  
                            |   A e | B e | match e with A x->e |B x->e 
Types:          τ ::= b1|b2|… | τ→ τ | τ*τ | τ+τ 
 
Even without constants, plenty of terms type-check with Γ = . 
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Example programs 

 
 
 

λx:b17. x 
 

has type 
 

b17 → b17 
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Example programs 

 
 
 

λx:b1. λf:b1→b2. f x 
 

has type 
 

b1 → (b1 → b2) → b2 
 



Lecture 6 CSE P505 August 2016  Dan Grossman 55 

Example programs 

 
 
 

λx:b1→b2→b3. λy:b2. λz:b1. x z y 
 

has type 
 

(b1 → b2 → b3) → b2 → b1 → b3 
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Example programs 

 
 
 

λx:b1. (A(x), A(x)) 
 

has type 
 

b1 → ((b1+b7) * (b1+b4)) 
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Example programs 

 
 
 

λf:b1→b3. λg:b2→b3. λz:b1+b2. 
        (match z with A x. f x | B x. g x) 

 
has type 

 
(b1 → b3) → (b2 → b3) → (b1 + b2) → b3 
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Example programs 

 
 
 

λx:b1*b2. λy:b3. ((y,x.1),x.2) 
 

has type 
 

(b1*b2) → b3 → ((b3*b1)*b2) 
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Empty and nonempty types 

So we have types for which there are closed values: 
 b17 → b17 
 b1 → (b1 → b2) → b2 
 (b1 → b2 → b3) → b2 → b1 → b3 
 b1 → ((b1+b7) * (b1+b4)) 
 (b1 → b3) → (b2 → b3) → (b1 + b2) → b3 
 (b1*b2) → b3 → ((b3*b1)*b2) 
 

But there are also many types for which there are no closed values: 
b1  b1→b2    b1+(b1→b2)   b1→(b2→b1)→b2 

 

And “I” have a “secret” way of knowing which types have values 
– Let me show you propositional logic… 
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Propositional Logic 

 Γ├ p1  Γ├ p2      Γ├ p1*p2     Γ├ p1*p2  
–––––––––––––––        –––––––––––         ––––––––– 
   Γ├ p1*p2         Γ├ p1         Γ├ p2 
 
 

   Γ├ p1      Γ├ p2     Γ├ p1+p2 Γ,p1├p3 Γ,p2├p3 
 –––––––––       –––––––––      ––––––––––––––––––––––––––– 
 Γ├ p1+p2    Γ├ p1+p2           Γ├ p3 
 
 p in Γ      Γ,p1├p2     Γ├ p1→p2  Γ├ p1 
–––––––––      –––––––––––        ––––––––––––––––– 
   Γ├ p     Γ├ p1→ p2         Γ├ p2 
 

With → for implies, + for inclusive-or and * for and: 
p ::= p1 | p2 | … | p→ p | p*p | p+p 
Γ ::= . | Γ,p Γ├ p 
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Guess what!!! 

That’s exactly our type system, just: 
• Erasing terms  
• Changing every τ to a p  

 
So our type system is a proof system for propositional logic 
• Function-call rule is modus ponens 
• Function-definition rule is implication-introduction 
• Variable-lookup rule is assumption 
• e.1 and e.2 rules are and-elimination 
• … 
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Curry-Howard Isomorphism 

• Given a closed term that type-checks, take the typing derivation, 
erase the terms, and have a propositional-logic proof 
 

• Given a propositional-logic proof of a formula, there exists a 
closed lambda-calculus term with that formula for its type (almost) 
 

• A term that type-checks is a proof – it tells you exactly how to 
derive the logic formula corresponding to its type 
 

• Lambdas are no more or less made up than logical implication! 
– STLC with pairs and sums is [constructive] propositional logic 

 
• Let’s revisit our examples under the logical interpretation… 
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Example programs 

 
 
 

λx:b17. x 
 

is a proof that 
 

b17 → b17 
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Example programs 

 
 
 

λx:b1. λf:b1→b2. f x 
 

is a proof that 
 

b1 → (b1 → b2) → b2 
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Example programs 

 
 
 

λx:b1→b2→b3. λy:b2. λz:b1. x z y 
 

is a proof that 
 

(b1 → b2 → b3) → b2 → b1 → b3 
 
 

Lecture 6 CSE P505 August 2016  Dan Grossman 66 

Example programs 

 
 
 

λx:b1. (A(x), A(x)) 
 

is a proof that 
 

b1 → ((b1+b7) * (b1+b4)) 
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Example programs 

 
 
 

λf:b1→b3. λg:b2→b3. λz:b1+b2. 
        (match z with A x. f x | B x. g x) 

 
is a proof that 

 
(b1 → b3) → (b2 → b3) → (b1 + b2) → b3 
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Example programs 

 
 
 

λx:b1*b2. λy:b3. ((y,x.1),x.2) 
 

is a proof that 
 

(b1*b2) → b3 → ((b3*b1)*b2) 
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Why care? 

 
• Makes me glad I’m not a dog 

 
• Don’t think of logic and computing as distinct fields 

 
• Thinking “the other way” can help you debug interfaces 

 
• Type systems are not ad hoc piles of rules! 

 
STLC is a sound proof system for propositional logic 

– But it’s not quite complete… 
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Classical vs. Constructive 

Classical propositional logic has the “law of the excluded middle”: 
 

–––––––––––––––  
Γ├ p1+(p1→p2) 

 

Think “p or not p” or double negation (we don’t have a not) 
 
Logics without this rule (or anything equivalent) are called 
constructive. They’re useful because proofs “know how the world 
is” and therefore “are executable.” 
 
Our match rule let’s us “branch on possibilities”, but using it 

requires knowing which possibility holds [or that both do]: 
  
     Γ├ p1+p2  Γ,p1├p3 Γ,p2├p3 
              ––––––––––––––––––––––––––– 
                   Γ├ p3 
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Example classical proof 

Theorem: I can always wake up at 9 and be at work by 10. 
Proof: If it’s a weekday, I can take a bus that leaves at 9:30.  If it is 

not a weekday, traffic is light and I can drive.  Since it is a 
weekday or it is not a weekday, I can be at work by 10. 

 
Problem: If you wake up and don’t know if it’s a weekday, this proof 

does not let you construct a plan to get to work by 10. 
 
In constructive logic, if a theorem is proven, we have a plan/program 

– And you can still prove, “If I know whether or not it is a 
weekday, then I can wake up at 9 and be at work by 10” 
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What about recursion 

• letrec lets you prove anything  
– (that’s bad – an “inconsistent logic”) 

 
        Γ,f:τ1→ τ2,x:τ1 ├ e:τ2   
    –––––––––––––––––––––––––––––––– 
      Γ├ letrec f x . e : τ1→τ2 

 
• Only terminating programs are proofs! 

 
• Related: In ML, a function of type int → ’a never returns 

normally 
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Last word on Curry-Howard 

• It’s not just STLC and constructive propositional logic 
– Every logic has a corresponding typed lambda calculus and 

vice-versa 
– Generics correspond to universal quantification 

 
• If you remember one thing: the typing rule for function 

application is implication-elimination (a.k.a. modus ponens) 


