

- Constant rule: context irrelevant
- Variable rule: lookup (no instantiation if x not in Γ)
- · Application rule: "yeah, that makes sense"
- · Function rule the interesting one...

```
Lecture 5
```

CSE P505 Autumn 2016 Dan Grossman

Is it "right"?

- · Can define any type system we want
- · What we defined is sound and incomplete
- Can prove incomplete with one example
 - Every variable has exactly one simple type
 Example (doesn't get stuck, doesn't typecheck)

CSE P505 Autumn 2016 Dan Grossman

 $(\lambda x. (x (\lambda y.y)) (x 3)) (\lambda z.z)$

Sound

Statement of soundness theorem: If . |·e:τ and e→*e2, then e2 is a value or there exists an e3 such that e2→e3
Proof is non-trivial

Must hold for all e and any number of steps
But easy given two helper theorems...

Progress: If . |·e:τ, then e is a value or there exists an e2 such that e→e2
Preservation: If . |·e:τ and e→e2, then . |·e2:τ

Lecture 5 CSE P505 Autumn 2016 Dan Grossman

Let's prove it

Lecture 5

Prove: If . e:τ then e2 is 1. If . e:τ th 2. If . e:τ and Prove something s Proof: By induction Case n=0: imr Case n>0: the	and $e \rightarrow *e^2$, a value or $\exists e^3$ such that $e^2 \rightarrow e^3$, assuming en e is a value or $\exists e^2$ such that $e \rightarrow e^2$ if $e \rightarrow e^2$ then . $\mid e^2 : \tau$ stronger: Also show . $\mid e^2 : \tau$ n on n where $e \rightarrow *e^2$ in n steps mediate from progress ($e=e^2$) n $\exists e^3$ such that	:		 Progress is what But Preservation we have been represented by the second se	at we care about on is the <i>invariant</i> that holds no matter hor running Preservation) implies Soundness eneral/powerful recipe for showing you "o nolds, then (a) you're in a good place (pro- where you go is a good place (preservation) two slides less important	w long don't get ogress) on)
Lecture 5	CSE P505 Autumn 2016 Dan Grossman	9	1	Lecture 5	CSE P505 Autumn 2016 Dan Grossman	10

Forget a couple things?

Progress: If $\ . \ \mid e:\tau$ then e is a value or there exists an e2 such that $e \rightarrow e2$

Proof: Induction on height of derivation tree for . $\Big| \cdot \mathbf{e} : \tau$ Rough idea:

- Trivial unless e is an application
- For e = e1 e2,
 - If left or right not a value, induction
 - If both values, e1 must be a lambda...

Forget a couple things?

What's the point

Preservation: If . $| \mathbf{e}: \tau \text{ and } \mathbf{e} \rightarrow \mathbf{e2} \text{ then } . | \mathbf{e2}: \tau$

Also by induction on assumed typing derivation.

The trouble is when $e{\rightarrow}e'$ involves substitution $- \quad \mbox{Requires another theorem}$

Substitution: If $\Gamma, \mathbf{x}: \tau \mathbf{1} \models \mathbf{e}: \tau \text{ and } \Gamma \models \mathbf{e1}: \tau \mathbf{1},$ then $\Gamma \models \mathbf{e} \{ \mathbf{e1} / \mathbf{x} \}: \tau$

Lecture 5

11

Lecture 5

Our plan

- Simply-typed Lambda-Calculus
- Safety = (preservation + progress)
- Extensions (pairs, datatypes, recursion, etc.)
- · Digression: static vs. dynamic typing
- Digression: Curry-Howard Isomorphism
- Subtyping
- Type Variables:
- Generics (∀), Abstract types (∃), Recursive types
- · Type inference

Having laid the groundwork... · So far: - Our language (STLC) is tiny

- We used heavy-duty tools to define it
- Now:

Lecture 6

- Add lots of things quickly
- Because our tools are all we need
- · And each addition will have the same form...

Lecture 5

CSE P505 Autumn 2016 Dan Grossman

13

15

CSE P505 August 2016 Dan Grossman

14

A method to our madness

- The plan
 - Add syntax
 - Add new semantic rules
 - Add new typing rules
 - · Such that we remain safe
- · If our addition extends the syntax of types, then
 - New values (of that type)
 - Ways to make the new values
 - · called introduction forms
 - Ways to use the new values · called elimination forms

Lecture 6

CSE P505 August 2016 Dan Grossman

Let bindings (CBV)

e ::= ... | let x = e1 in e2 (no new values or types) $e1 \rightarrow e1'$ let x = e1 in $e2 \rightarrow let x = e1'$ in e2let x = v in $e^2 \rightarrow e^2\{v/x\}$ Γ | e1:τ1 Γ,x:τ1 | e2:τ2 $\Gamma \quad | \quad \text{let } \mathbf{x} = \mathbf{e1} \text{ in } \mathbf{e2} \quad : \quad \tau 2$

Lecture 6

CSE P505 August 2016 Dan Grossman

16

Let as sugar?

let is	s ao	ctually so	mι	ıch lik	e la	mbda,	we	could	use	2	other	diffe	rent
	but	t equivale	nt s	semai	ntics	;							
~			_		• ·-		1-						

- let x = e1 in e2 is sugar (a different concrete way to 2. write the same abstract syntax) for $(\lambda x.e2)$ e1
- 3. Instead of rules on last slide, just use

let x = e1 in e2 \rightarrow (λ x.e2) e1

Note: In OCaml, let is not sugar for application because let is typechecked differently (type variables)

Lecture 6

17

Booleans

e ::: ν ::: τ :::	= tru fls e ? e : e = tru fls = bool el → el'
e1 ? (e2 : e3 \rightarrow e1' ? e2 : e3
tru ?	e2 : e3 \rightarrow e2 fls ? e2 : e3 \rightarrow e3
	Γ tru:bool Γ fls:bool
	$\Gamma \vdash e1:bool$ $\Gamma \vdash e2:\tau$ $\Gamma \vdash e3:\tau$
	Γ - e1 ? e2 : e3 : τ
Lecture 6	CSE P505 August 2016 Dan Grossman

OCaml? Large-step?

- In Homework 3, you add conditionals, pairs, etc. to our environment-based large-step interpreter
- · Compared to last slide - Different meta-language (cases rearranged) - Large-step instead of small
- Large-step booleans with inference rules:

	tru 🖖 tru	fls ♥ fls
e1 🖖 tru	ı e2 ♥ v	e1 ♥ fls e3 ♥ v
e1 ? e2	::e3 ♥ v	e1 ? e2 : e3 ♥ v
Lecture 6	CSE P505	5 August 2016 Dan Grossman

Pairs (CBV, left-to-right)

Unlike ML, part 1

e1⊸e1′	e2→e2′	e→e′	e⊸e′
(e1,e2)→(e1',e2)	$(v,e2) \rightarrow (v,e2')$	e.1→e′.1	e.2→e′.2
(v1,v2).1 \rightarrow v1	(v1,v2).2 →	v2	
Г¦е1:т1 Г¦е2:т2	Γ e:τ1*τ2	Γ¦e:τ1	*τ2
Γ [(e1,e2):τ1*τ2	Γ¦e.1:τ1	Г¦е.2:	τ2
Lecture 6 CS	SE P505 August 2016 Dan Gro	ssman	20

Toward Sums

 Next additi Informal re type t = 	ion: <i>sums</i> (much like ML datatypes) eview of ML datatype basics = A of t1 B of t2 C of t3		 ML datatyp Allow re Introduct Allow ty Allow fa 	tes do a lot at once ecursive types ce a new <i>name</i> for a type /pe parameters ancy pattern matching	
 Introdu Elimina Typing: 	ction forms: constructor applied to expressi- ation forms: match e1 with pat -> exp : If e has type t1, then A e has type t	on p	 What we do Skip red Avoid n Skip typ Only patient 	o will be <i>simpler</i> cursive types [an orthogonal addition] ames (a bit simpler in theory) be parameters ttterns of form A x and B x (rest is sugar))
Lecture 6	CSE P505 August 2016 Dan Grossman	21	Lecture 6	CSE P505 August 2016 Dan Grossman	22

19

Unlike ML, part 2

Unlike ML,	part 2		The ma	ath (with	type rules to con	ne)
 What we add wi Only two cor All sum type 	Il also be <i>different</i> hstructors A and B s use these constructors		e ::= Α α ν ::= Α ν τ ::= τ+	e B e match o / B v · τ	e with A x -> e B x -> e	
 So A e can No need to c 	have any sum type allowed by e's type teclare sum types in advance		e→ e'	$e \rightarrow e'$	$e1 \rightarrow e1'$	
 Like function 	as, will "guess types" in our rules		$\overline{Ae\toAe'}$	$B e \rightarrow B e'$	match e1 with A x->e2 B y \rightarrow match e1' with A x->e2	y -> e3 2 B y -> e3
This still helps e	explain what datatypes are					
After formalism,	compare to C unions and OOP		match A	v with A x->e2	$ B y \rightarrow e3 \rightarrow e2\{v/x\}$	
			match B	v with A x->e2	$ B y \rightarrow e3 \rightarrow e3\{v/y\}$	
Lecture 6	CSE P505 August 2016 Dan Grossman	23	Lecture 6	CSE P50	5 August 2016 Dan Grossman	24

Low-level view

You can think of datatype values as "pairs"

- First component: A or B (or 0 or 1 if you prefer)
- Second component: "the data"
- e2 or e3 of match evaluated with "the data" in place of the variable
- This is all like OCaml as in Lecture 1
- Example values of type int + (int -> int):

Compare to pairs, part 1

- "pairs and sums" is a big idea
 - Languages should have both (in some form)
 - Somehow pairs come across as simpler, but they're really "dual" (see Curry-Howard soon)
- Introduction forms:
 - pairs: "need both", sums: "need one"

Lecture 6

CSE P505 August 2016 Dan Grossman

27

29

Compare to pairs, part 2

Elimination forms

 pairs: "get either", sums: "be prepared for either"

 $\frac{\Gamma \vdash e:\tau 1 \star \tau 2}{\Gamma \vdash e.1:\tau 1} \qquad \frac{\Gamma \vdash e:\tau 1 \star \tau 2}{\Gamma \vdash e.2:\tau 2}$

```
Γ | e1 : τ1+τ2 Γ, X:τ1 | e2 : τ Γ, Y:τ2 | e3 : τ
```

 Γ | match e1 with A x->e2 | B y->e3 : τ

```
Lecture 6
```

CSE P505 August 2016 Dan Grossman

28

26

Living with just pairs

- If stubborn you can cram sums into pairs (don't!)
 - Round-peg, square-hole
 - Less efficient (dummy values)
 - More error-prone (may use dummy values)
 - Example: int + (int -> int) becomes
 int * (int * (int -> int))

Sums in other guises

Sums in other guises Where are we type t = A of t1 | B of t2 | C of t3· Have added let, bools, pairs, sums match e with $A \times - > ...$. Could have added many other things Meets Java [C# similar]: Amazing fact: . abstract class t {abstract Object m();} - Even with everything we have added so far, every program class A extends t { t1 x; Object m() {...}} terminates! class B extends t { t2 x; Object m() {...}} - i.e., if . $\models \mathbf{e} : \tau$ then there exists a value \mathbf{v} such that class C extends t { t3 x; Object m() {...}} e →*v ... e.m() ... - Corollary: Our encoding of recursion won't type-check - A new method for each match expression To regain Turing-completeness, need explicit support for - Supports orthogonal forms of extensibility recursion · New constructors vs. new operations over the dataype! 32 Lecture 6 CSE P505 August 2016 Dan Grossman 31 Lecture 6 CSE P505 August 2016 Dan Grossman

Recursion

 Could add "fix e", but most people find "letrec f x . e" more intuitive e ::= letrec f x . e v ::= letrec f x . e (no new types) "Substitute argument like lambda & whole function for f" 	 Simply-typed Lambda-Calculus Safety = (preservation + progress) Extensions (pairs, datatypes, recursion, etc.) Digression: static vs. dynamic typing Digression: Curry-Howard Isomorphism Subtyping Type //ariphas:
$(\text{letrec } f x \cdot e) v \rightarrow (e\{v/x\})\{(\text{letrec } f x \cdot e) / f\}$ $\Gamma, f: \tau 1 \rightarrow \tau 2, x: \tau 1 \models e: \tau 2$	 – Generics (∀), Abstract types (∃) • Type inference
$\label{eq:lecture} \begin{array}{c} \mbox{Γ} \mbox{$\stackrel{$h$}$ lettrec f x . e : $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	Lecture 6 CSE P505 August 2016 Dan Grossman 34

Static vs. dynamic typing

- First decide something is an error
 - Examples: 3 + "hi", function-call arity, redundant matches
 - Examples: divide-by-zero, null-pointer dereference, bounds
 - Soundness / completeness depends on what's checked!
- · Then decide when to prevent the error
 - Example: At compile-time (static)
 - Example: At run-time (dynamic)
- "Static vs. dynamic" can be discussed rationally!
 - Most languages have some of both
 - There are trade-offs based on facts

Basic benefits/limitations

Indisputable facts:

Our plan

- Languages with static checks catch certain bugs without testing
 Earlier in the software-development cycle
- · Impossible to catch exactly the buggy programs at compile-time
 - Undecidability: even code reachability
 - Context: Impossible to know how code will be used/called
 - Application level: Algorithmic bugs remain
 - · No idea what program you're trying to write

35

Lecture 6

Eagerness

I prefer to acknowledge a continuum - rather than "static vs. dynamic" (2 most common points) "Catching a bug before it matters" is in inherent tension with Example: divide-by-zero and code 3/0 "Don't report a bug that might not matter" Keystroke time: Disallow it in the editor Compile-time: reject if code is reachable Corollary: Can always wish for a slightly better trade-off for a • maybe on a dead branch particular code-base at a particular point in time Link-time: reject if code is reachable - maybe function is never used Run-time: reject if code executed - maybe branch is never taken Later: reject only if result is used to index an array – cf. floating-point +inf.0! Lecture 6 CSE P505 August 2016 Dan Grossman 37 Lecture 6 CSE P505 August 2016 Dan Grossman

Exploring some arguments

Inherent Trade-off

Exploring some arguments

Lecture 6

2. Static typing does/doesn't prevent useful programs Overly restrictive type systems certainly can (cf. Pascal arrays) Sum types give you as much flexibility as you want: type anything = Int of int | Bool of bool | Fun of anything -> anything | Pair of anything * anything I ... Viewed this way, dynamic typing is static typing with one type and implicit tag addition/checking/removal Easy to compile dynamic typing into OCaml this way More painful by hand (constructors and matches everywhere)

CSE P505 August 2016 Dan Grossman

41

Exploring some arguments

- 3. (a) Static catches bugs earlier
 - As soon as compiled
 - Whatever is checked need not be tested for
 - Programmers can "lean on the the type-checker"

CSE P505 August 2016 Dan Grossman

Example: currying versus tupling:

Lecture 6

```
(* does not type-check *)
let pow x y = if y=0
              then 1
              else x * pow (x,y-1)
```

42

38

Exploring some arguments 3. (b) But static often catches only "easy" bugs So you still have to test - And any decent test-suite will catch the "easy" bugs too Example: still wrong even after fixing currying vs. tupling (* does not type-check and wrong algorithm *) let pow x y = if y=0then 1 else x + pow (x, y-1)Lecture 6 CSE P505 August 2016 Dan Grossman 43

Exploring some arguments 4. (a) "Dynamic typing better for code evolution" Imagine changing: let cube x = x*x*x To: type t = I of int | S of string let cube x = match x with I i -> i*i*i | S s -> s^s^s

Static: Must change all existing callers

```
Dynamic: No change to existing callers...
   let cube x = if int? x then x*x*x
                              else x^x^x
```

Lecture 6

44

Exploring some arguments

- 4. (b) "Static typing better for code evolution" Imagine changing the return type instead of the argument type: let cube x = if x > 0 then I (x*x*x)else S "hi"
 - Static: Type-checker gives you a full to-do list cf. Adding a new constructor if you avoid wildcard patterns
- Dynamic: No change to existing callers; failures at runtime let cube x = if x > 0 then x*x*xelse "hi"

Lecture 6

CSE P505 August 2016 Dan Grossman

Exploring some arguments

- 5. Types make code reuse easier/harder
- Dynamic:
 - Sound static typing always means some code could be reused more if only the type-checker would allow it

CSE P505 August 2016 Dan Grossman

- By using the same data structures for everything (e.g., lists), you can reuse lots of libraries
- Static:
 - Using separate types catches bugs and enforces
 - abstractions (don't accidentally confuse two lists)
 - Advanced types can provide enough flexibility in practice

Whether to encode with an existing type and use libraries or make a new type is a key design trade-off

Lecture 6

CSE P505 August 2016 Dan Grossman

46

Exploring some arguments

- 6. Types make programs slower/faster
- Static
 - Faster and smaller because programmer controls where _ tag tests occur and which tags are actually stored
 - Example: "Only when using datatypes"
- Dynamic:
 - Faster because don't have to code around the type system
 - Optimizer can remove [some] unnecessary tag tests [and tends to do better in inner loops]

Lecture 6

47

45

Lecture 6

Exploring some arguments

7. (a) Dynamic better for prototyping

Early on, you may not know what cases you need in datatypes and functions

- But static typing disallows code without having all cases; dynamic lets incomplete programs run
- So you make premature commitments to data structures
- And end up writing code to appease the type-checker that you later throw away
 - · Particularly frustrating while prototyping

Exploring some arguments	Our plan
 7. (b) Static better for prototyping What better way to document your evolving decisions on data structures and code-cases than with the type system? New, evolving code most likely to make inconsistent assumptions Easy to put in temporary stubs as necessary, such as I> raise Unimplemented 	 Simply-typed Lambda-Calculus Safety = (preservation + progress) Extensions (pairs, datatypes, recursion, etc.) Digression: static vs. dynamic typing Digression: Curry-Howard Isomorphism Subtyping Type Variables: Generics (∀), Abstract types (∃), Recursive types Type inference
Lecture 6 CSE P505 August 2016 Dan Grossman 49	Lecture 6 CSE P505 August 2016 Dan Grossman 50

Curry-Howard Isomorphism

 Define a <i>type system</i> to rule out programs we don't want What logicians do Define a <i>logic</i> (a way to state propositions) E.g.,: f ::= p f or f f and f f -> f Define a <i>proof system</i> (a [sound] way to prove propositions) It turns out we did that too! Slogans: "Propositions are Types" "Proofs are Programs" 	= pairs = sums = no constants (can add one or more if you want) Expressions: e ::= x λx:τ. e e e (e,e) e.1 e.2 A e B e match e with A x->e B x->e Types: τ ::= b1 b2 τ→ τ τ*τ τ+τ Even without constants, plenty of terms type-check with Γ = . Lecture 6 CSE P505 August 2016 Dan Grossman 52
Example programs	Example programs

A funny STLC

λx:b17. x	$\lambda x:b1. \lambda f:b1 \rightarrow b2. f x$
has type	has type
$b17 \rightarrow b17$	$b1 \rightarrow (b1 \rightarrow b2) \rightarrow b2$

Lecture 6

CSE P505 August 2016 Dan Grossman

Example programs	Example programs
$\lambda x: b1 \rightarrow b2 \rightarrow b3$. $\lambda y: b2$. $\lambda z: b1$. $x \neq y$ has type $(b1 \rightarrow b2 \rightarrow b3) \rightarrow b2 \rightarrow b1 \rightarrow b3$	<pre>λx:bl. (A(x), A(x)) has type bl → ((b1+b7) * (b1+b4))</pre>
Lecture 6 CSE P505 August 2016 Dan Grossman 55	Lecture 6 CSE P505 August 2016 Dan Grossman 56
Example programs	Example programs
$\begin{array}{llllllllllllllllllllllllllllllllllll$	λx:b1*b2. λy:b3. ((y,x.1),x.2) has type (b1*b2) → b3 → ((b3*b1)*b2)
Lecture 6 CSE P505 August 2016 Dan Grossman 57	Lecture 6 CSE P505 August 2016 Dan Grossman 58

Empty and nonempty types

Lecture 6

So we have types for which there are closed values: b17 → b17							
$b1 \rightarrow (b1 \rightarrow b2) \rightarrow b2$							
(b1 \rightarrow b2 \rightarrow b3) \rightarrow b2 \rightarrow b1 \rightarrow b3							
b1 \rightarrow ((b1+b7) * (b1+b4))							
(b1 \rightarrow b3) \rightarrow (b2 \rightarrow b3) \rightarrow (b1 + b2) \rightarrow b3							
(b1*b2) \rightarrow b3 \rightarrow ((b3*b1)*b2)							
But there are also many types for which there are no closed values:							
b1 b1⊸b2 b1+(b1⊸b2) b1→(b2⊸b1)→b2							
And "I" have a "secret" way of knowing which types have values – Let me show you propositional logic…							

CSE P505 August 2016 Dan Grossman

59

Propositional Logic

With \rightarrow for implies, + for inclusive-or and * for and: $\mathbf{p} ::= \mathbf{p1} \mid \mathbf{p2} \mid \dots \mid \mathbf{p} \rightarrow \mathbf{p} \mid \mathbf{p*p} \mid \mathbf{p+p}$ $\mathbf{r} ::= \cdot \mid \mathbf{r,p}$									
	г¦ р1 г¦	р2 Г⊢р	о1*р2 Г¦ р1*р2	2					
	 Γ ├ p1*p2	г	р1 Г p2	-					
	r¦ p1	Г р2	Г р1+р2 Г,р1 р3 Г,р2						
	Г¦ р1+р2	Г ├ p1+p2	Г¦ р3						
	рinГ	г, p1 p2	r¦ p1→p2 r¦ p	1					
	r¦ p	$r \vdash p1 \rightarrow p2$	r¦ p2	-					
Le	ecture 6	CSE P505 August	2016 Dan Grossman	60					

Guess v	vhat!!!		Curry-Howard Isomorphism		
 That's exactly our type system, just: Erasing terms Changing every τ to a p So our type system <i>is</i> a proof system for propositional logic Function-call rule is modus ponens Function-definition rule is implication-introduction Variable-lookup rule is assumption e.1 and e.2 rules are and-elimination 			 Given a closed term that type-checks, take the typing derivation, erase the terms, and have a propositional-logic proof Given a propositional-logic proof of a formula, there exists a closed lambda-calculus term with that formula for its type (almost) A term that type-checks is a proof – it tells you exactly how to derive the logic formula corresponding to its type Lambdas are no more or less made up than logical implication! STLC with pairs and sums <i>is</i> [constructive] propositional logic 		
Lecture 6	CSE P505 August 2016 Dan Grossman	61	Let's revisit our examples under the logical interpretation Lecture 6 CSE P505 August 2016 Dan Grossman 62		

Example programs

λx:b17. x				$\lambda {\bf x}\!:\!{\bf b1.}\ \lambda {\bf f}\!:\!{\bf b1}\!\!\rightarrow\!\!{\bf b2.}\ {\bf f}\ {\bf x}$	
is a proof that			is a proof that		
$b17 \rightarrow b17$			b1 \rightarrow (b1 \rightarrow b2) \rightarrow b2		
Lecture 6	CSE P505 August 2016 Dan Grossman	63	Lecture 6	CSE P505 August 2016 Dan Grossman	64

Example programs

is a proof that

(b1 \rightarrow b2 \rightarrow b3) \rightarrow b2 \rightarrow b1 \rightarrow b3

Example programs

Example programs

 $\lambda x:b1.$ (A(x), A(x))

is a proof that

b1 \rightarrow ((b1+b7) * (b1+b4))

Lecture 6

65

Lecture 6

CSE P505 August 2016 Dan Grossman

Example programs

is a proof that

(b1 \rightarrow b3) \rightarrow (b2 \rightarrow b3) \rightarrow (b1 + b2) \rightarrow b3

CSE P505 August 2016 Dan Grossman

Example programs

 $\lambda x:b1*b2. \lambda y:b3. ((y,x.1),x.2)$

is a proof that

(b1*b2) \rightarrow b3 \rightarrow ((b3*b1)*b2)

Lecture 6

CSE P505 August 2016 Dan Grossman

68

Why care?

Lecture 6

- Makes me glad I'm not a dog
- · Don't think of logic and computing as distinct fields
- · Thinking "the other way" can help you debug interfaces
- Type systems are not ad hoc piles of rules!
- STLC is a sound proof system for propositional logic
 - But it's not quite complete...

Lecture 6

CSE P505 August 2016 Dan Grossman

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

Г| p1+(p1→p2)

Think "p or not p" or double negation (we don't have a not)

Logics without this rule (or anything equivalent) are called *constructive*. They're useful because proofs "know how the world is" and therefore "are executable."

Our match rule let's us "branch on possibilities", but *using it* requires *knowing* which possibility holds [or that both do]:

Г р1+p2 Г,p1 р3 Г,p2 р3

г⊦р3

Lecture 6

CSE P505 August 2016 Dan Grossman

70

Example classical proof

Theorem: I can always wake up at 9 and be at work by 10. Proof: If it's a weekday, I can take a bus that leaves at 9:30. If it is not a weekday, traffic is light and I can drive. *Since it is a weekday or it is not a weekday*, I can be at work by 10.

Problem: If you wake up and don't know if it's a weekday, this proof does not let you construct a plan to get to work by 10.

In constructive logic, if a theorem is proven, we have a plan/program

 And you can still prove, "If I know whether or not it is a weekday, then I can wake up at 9 and be at work by 10"

Lecture 6

71

67

69

What about recursion

letrec lets you prove anything
 (that's bad – an "inconsistent logic")

 $\Gamma, f: \tau 1 \rightarrow \tau 2, x: \tau 1 \models e: \tau 2$

 $\Gamma \vdash \texttt{letrec} \ \texttt{f} \ \texttt{x}$. e : $\tau 1 {\rightarrow} \tau 2$

- Only terminating programs are proofs!
- Related: In ML, a function of type int → 'a never returns normally

Last word on Curry-Howard

- It's not just STLC and constructive propositional logic
 - Every logic has a corresponding typed lambda calculus and vice-versa
 - Generics correspond to universal quantification
- If you remember one thing: the typing rule for function application is implication-elimination (a.k.a. modus ponens)

Lecture 6

CSE P505 August 2016 Dan Grossman

73