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STLC in one slide 

Expressions:   e ::= x | λx. e | e e | c 

     Values:   v ::= λx. e | c 

         Types:   τ ::= int | τ→ τ 

     Contexts:   Γ ::= . | Γ, x : τ 

   e1 → e1’           e2 → e2’ 

–––––––––––––    –––––––––––     ––––––––––––––––– 
e1 e2 → e1’ e2  v e2 → v e2’ (λx.e) v → e{v/x}                 

  –––––––––––        –––––––––––– 

   Γ ├ c : int     Γ ├ x : Γ(x)  
 

 

       Γ,x:τ1 ├  e:τ2            Γ ├ e1:τ1→ τ2  Γ ├ e2:τ1 

––––––––––––––––––   –––––––––––––––––––––––– 
   Γ ├ (λx.e):τ1→ τ2       Γ ├ e1 e2:τ2      

 

e→e’ 

  

 

Γ ├ e: τ 
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Our plan 

• Simply-typed Lambda-Calculus 

• Safety = (preservation + progress) 

• Extensions (pairs, datatypes, recursion, etc.) 

• Digression: static vs. dynamic typing 

• Digression: Curry-Howard Isomorphism 

• Subtyping 

• Type Variables:  

– Generics (), Abstract types ()  

• Type inference 
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Polymorphism 

• Key source of restrictiveness in our types so far: 

 Given a Γ, there is at most one τ such that Γ├  e:τ 
 

• Various forms of polymorphism allow more terms to type-check 

– Ad hoc: e1+e2 in SML < C < Java <  C++ 

– Parametric: “generics” ’a -> ’a can also have type 

 int->int , (’b->’b)->(’b->’b), etc. 

– Subtype: new Vector().add(new C()) is legal pre-

generics Java because new C() can have type Object 

because C ≤ Object 
 

• Try to avoid the ambiguous word “polymorphism” 

– Prefer “static overloading”, “dynamic dispatch”, “type 

abstraction”, “subtyping” 
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How to add subtyping 

Key idea: A value of subtype should “make sense” (not lead to 

stuckness) wherever a value of supertype is expected 

– Hence what is a subtype is, “not a matter of opinion” 

 

Capture key idea with just one new typing rule (for Γ├ e:τ) 

– Leaving all the action to a new “helper” judgment τ1 ≤ τ2 
    

   Γ├ e:τ1  τ1 ≤ τ2  

   –––––––––––––––––– 
                Γ├  e:τ2 

 

To see a language with [more] interesting subtyping opportunities  

we’ll add records to our typed lambda-calculus… 
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Records w/o polymorphism 

Like pairs, but fields named and any number of them: 

Field names: l (distinct from variables) 

Exps:   e  ::= … | {l=e, …, l=e} | e.l  

Types: τ ::= … | {l=τ, …, l=τ} 
 

                      e  → e’                                             e  → e’ 
––––––––––––––––––––––––––––––                ––––––––– 
{l1=v1, …, li=vi, lj=e, …, ln=en}                   e.l → e’.l 
→   {l1=v1, …, li=vi, lj=e’, …, ln=en} 
 
––––––––––––––––––––––––––––– 
{l1=v1,…,li=vi,…,ln=vn}. li → vi           Γ├ e :{l1=τ1,…,ln=τn} 
                                                                     –––––––––––––––––––– 
                                                                             Γ├  e. li:τi 
 Γ├  e1:τ1 … Γ├  en:τn  “labels distinct” 
 –––––––––––––––––––––––––––––––––––– 
 Γ├ {l1=e1, …, ln=en} : {l1=τ1,…,ln=τn} 
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Width 

This doesn’t yet type-check but it’s safe: 

(* f : {l1=int, l2=int}-> int *) 

let f = λx. x.l1 + x.l2 in  

(f {l1=3, l2=4})  

  + (f {l1=7, l2=8, l3=9}) 
 

• f has to have one type, but wider arguments okay 

• Suggests a first inference rule for our new τ1 ≤ τ2 judgment: 

 

  ––––––––––––––––––––––––––––––––––––––––  

           {l1=τ1,…, ln=τn, l=τ} ≤  {l1=τ1,…, ln=τn} 
 

– Allows 1 new field, but can use the rule multiple times 
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Transitivity 

• To derive .├ {l9=7,l22=4,l0=λx. x.l1 } : {l9=int} 

 we could use subsumption twice with our width rule each time 
 

• But it’s more convenient and sensible to be able to derive 
{l9=int,l22=int,l0={l1=int}->int} ≤ {l9=int} 
 

• In general, can accomplish this with a transitivity rule for our 

subtyping judgment 
 

    τ1 ≤ τ2  τ2 ≤ τ3 

    –––––––––––––––––– 
                               τ1 ≤ τ3 

 

– Now a type-checker can at each point use subsumption at 
most once, asking a helper function, “I have a τ1 and need a 

τ2; am I cool?” 
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Permutation 

• Why should field order in the type matter? 

– For safety, it doesn’t 

 

• So this permutation rule is sound: 

– Again transitivity makes this enough 
 

     ––––––––––––––––––––––––––––––––––  

     {l1=τ1, …, li=τi,lj=τj, …, ln=τn}  

     ≤  {l1=τ1, …, lj=τj,li=τi, …, ln=τn}  

 

• Note in passing: Efficient algorithms to decide if  

 τ1 ≤ τ2 are not always simple or existent 

– Not hard with rules shown so far 
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Digression: Efficiency 

• With our semantics, width and permutation make perfect sense 

• But many type systems restrict one or both to make fast 

compilation easier 

Goals: 

1. Compile x.l to memory load at known offset 

2. Allow width subtyping 

3. Allow permutation subtyping 

4. Compile record values without (many) “gaps” 

All 4 impossible in general, any 3 is pretty easy 

 

– Metapoint: Type systems often have restrictions motivated 

by compilers, not semantics 
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Toward depth 

Recall we added width to type-check this code: 

 

let f = λx. x.l1 + x.l2 in  

     (f {l1=3, l2=4})  

   + (f {l1=7, l2=8, l3=9}) 

 

But we still can’t type-check this code: 

 

let f = λx. x.l.l1 + x.l.l2 in 

    (f {l = {l1=3, l2=4} })  

  + (f {l = {l1=7, l2=8, l3=9} } ) 

 

Want subtyping “deeper” in record types… 
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Depth 

• This rule suffices 

     τi ≤ τ 

        ––––––––––––––––––––––––––––––  

                   {l1=τ1,…, li=τi,…,ln=τn}  

     ≤  {l1=τ1,…, li=τ,…,ln=τn} 

 

• A height n derivation allows subtyping n levels deep 

• But is it sound? 

– Yes, but only because fields are immutable!! 

– Once again a restriction adds power elsewhere! 

– Why is immutability key for this rule? See also: HW4 



Lecture 7 CSE P505 Autumn 2016  Dan Grossman 13 

Toward function subtyping 

• So far allow some record types where others expected 

• What about allowing some function types where others 

expected 

• For example,  

    int → {l1=int,l2=int} ≤  int → {l1=int} 

 

• But what’s the general principle? 

 

              ?????? 

    –––––––––––––––––  

                        τ1→ τ2 ≤ τ3→ τ4 
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Function subtyping 

     τ3 ≤ τ1  τ2 ≤ τ4 

 ––––––––––––––––– Also want:   ––––––– 

     τ1→ τ2 ≤ τ3→ τ4                 τ ≤ τ 
 

• Supertype can impose more restrictions on arguments and 

reveal less about results 

• Jargon: Contravariant in argument, covariant in result 

• Example: 

 {l1= int,l2= int}→ {l1= int,l2= int}  

 ≤ {l1= int,l2= int,l3= int}→ {l1= int} 
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Let me be clear 

 

• Functions are contravariant in their argument and covariant in 
their result 

 

• Similarly, in class-based OOP, an overriding method could have 
contravariant argument types and covariant result type 

– But many languages aren’t so useful 

 

• Covariant argument types are wrong!!! 

– Please remember this 

– For safety, but see Dart and Typescript and Eiffel 

• Can “method missing error” occur at run-time? 
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Summary 

Γ├ e :τ1  τ1≤τ2         τ1≤τ2  τ2≤τ3      τ3≤τ1 τ2≤τ4 

––––––––––––––––    –––––    –––––––––––––    ––––––––––––––      
Γ├  e:τ2        τ≤τ      τ1 ≤ τ3    τ1→τ2≤τ3→τ4 

 

––––––––––––––––––––––––––––––––––––––––  

 {l1=τ1,…, ln=τn, l=τ} ≤  {l1=τ1,…, ln=τn} 
 

––––––––––––––––––––––––––––––––––  

 {l1=τ1, …, li=τi,lj=τj, …, ln=τn} ≤   

 {l1=τ1, …, lj=τj,li=τi, …, ln=τn} 
 

                      τi ≤ τ 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––  

  {l1=τ1,…, li=τi,…,ln=τn}  ≤  {l1=τ1,…, li=τ,…,ln=τn} 
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Where are we 

• So far: Added subsumption and subtyping rules 
  

   Γ├ e :τ1  τ1 ≤ τ2  

   –––––––––––––––––– 
                 Γ├ e:τ2 

 

• And… this subtyping has no run-time effect! 

– Tempting to go beyond: coercions & downcasts 
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Coercions 

Some temptations 

1.  int ≤ float           “numeric conversion” 

2.  int ≤ {l1=int} “autoboxing” 

3.  τ  ≤ string           “implicit marshalling / printing” 

4.  τ1 ≤ τ2     “overload the cast operator” 

 

These all require run-time actions for subsumption 

– Called coercions 

 

Keeps programmers from whining  about float_of_int and 

obj.toString(), but… 
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Coherence problems 

• Now program behavior can depend on: 

– “where” subsumption occurs in type-checking 

– “how” τ1 ≤ τ2 is derived 

• These are called “coherence” problems 

 

Two “how” examples: 
 

• print_string(34) where int ≤ float and τ ≤ string 

– Can “fix” by printing ints with trailing .0 
 

• 34==34 where int ≤ {l1=int} and == is bit-equality 
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It’s a mess 

Languages with “incoherent” subtyping must define 

– Where subsumption occurs 

– What the derivation order is 

Typically complicated, incomplete and/or arbitrary 

C++ example (Java interfaces similar, unsure about C#) 
 

  class C2 {}; 

  class C3 {}; 

  class C1 : public C2, public C3 {}; 

  class D { 

  public: int f(class C2 x) { return 0; } 

     int f(class C3 x) { return 1; } 

  }; 

  int main() { return D().f(C1()); } 
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Downcasts 

• A separate issue: downcasts 

• Easy to explain a checked downcast:   
 

 if_hastype(τ,e1) then x -> e2 else e3 
 

Roughly, “if at run-time e1 has type τ (or a subtype), then bind it to 

x and evaluate e2. Else evaluate e3.” 

 

• Just to show the issue is orthogonal to exceptions 

 

• In Java you use instanceof and a cast 
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Bad results 

Downcasts exist and help avoid limitations of incomplete type 

systems, but they have drawbacks: 

1. The obvious:  They can fail at run-time 

2. Types don’t erase: need run-time tags where ML doesn’t 

3. Breaks abstractions: without them, you can pass 
{l1=1,l2=2} and {l1=1,l2=3} to f : {l1=int}->int 

and know you get the same answer! 

4. Often a quick workaround when you should use parametric 

polymorphism… 
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Our plan 

• Simply-typed Lambda-Calculus 

• Safety = (preservation + progress) 

• Extensions (pairs, datatypes, recursion, etc.) 

• Digression: static vs. dynamic typing 

• Digression: Curry-Howard Isomorphism 

• Subtyping 

• Type Variables:  

– Generics (), Abstract types ()  

• Type inference 
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The goal 

Understand this interface and why it matters: 

type ’a mylist 

val empty_list : ’a mylist  

val cons   : ’a -> ’a mylist -> ’a mylist  

val decons : ’a mylist ->((’a * ’a mylist) option) 

val length : ’a mylist -> int 

val map    : (’a -> ’b) -> ’a mylist -> ’b mylist 

From two perspectives: 

1. Library: Implement code to this specification 

2. Client: Use code meeting this specification 



Lecture 7 CSE P505 Autumn 2016  Dan Grossman 25 

What the client likes 

1. Library is reusable 

• Different lists with elements of different types 

• New reusable functions outside library, e.g.: 

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist 

 

2. Easier, faster, more reliable than subtyping 

• No downcast to write, run, maybe-fail 

 

3. Library behaves the same for all type instantiations! 
– e.g.:    length (cons 3 empty_list)  
            length (cons 4 empty_list)  
        length (cons (7,9) empty_list) 

     must be totally equivalent 

– In theory, less (re)-integration testing 
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What the library likes 

1. Reusability 

• For same reasons as clients 

 

2. Abstraction of mylist from clients 

• Clients behave the same for all equivalent implementations 

– e.g.: can change to an arrayList 

• Clients typechecked knowing only there exists a type 
constructor mylist 

• Clients cannot cast a τ mylist to its hidden 

implementation 

Allowing programmers to define their own abstractions is an 

essential obligation (??) of a PL 



Lecture 7 CSE P505 Autumn 2016  Dan Grossman 27 

What now? 

So to understand the essential ideas of type variables, we could 

extend our formal typed lambda calculus with: 

• Types like α. β. α→(α→ β)→ β  

• Functions that take types as well as values (generics) 

• Type constructors (take types to produce types) 

• Modules with abstract types 

 

Instead we’ll use pseudocode 

• Reminiscent of OCaml 

• But this is not code that works in OCaml 

• Will then explain why OCaml is actually more restrictive 

– (It’s for type inference) 
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Basics 

• Let functions take types as well as values 

– Made up syntax 

– Still just currying 

(*map: ’a. ’b. (’a->’b)->’a list->’b list)*) 

let map <’a> <’b> f lst = … 
 

• In body, type variables are in scope just like term variables 

– Use for calling other polymorphic functions 
 

let ftf = map <int> <bool> (fun x->x=2) [1;2;3] 
 

 

 

let map <’a> <’b> (f:’a->’b) (lst:’a list) = 

    match lst with 

       [] -> [] 

     | hd::tl -> (::<’b>) (f hd)  

                          (map<’a><’b> f tl) 
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Basics, cont’d 

• Instantiating a type variable does substitution 

– Just like calling a function with a value does 

– So map<int> would be 

<’b> fun (f:int->’b) -> fun (lst:int list) -> 

    match lst with 

       [] -> [] 

     | hd::tl -> (::<’b>) (f hd)  

                          (map<int><’b> f tl) 

• In types or programs, can consistently rename type variables 

– So these are two ways to write the same type 

’a. ’b. (’a->’b)->’a list->’b list 

’foo. ’bar. (’foo->’bar)->’foo list->’bar list 
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What can you do with types? 

• The only thing we “do” with types is instantiate generic functions 

– And all callees “do” with type arguments is other instantiations 

– So these types have no run-time effect 

• That is, a pre-pass could erase them all 

• That is, an interpreter/compiler can ignore them 

 

• This “erasure” property doesn’t hold if allow run-time type 
operations like instanceof or C#-style dynamic dispatch 

– Or C++-style overloading 

– These break abstraction… 
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Abstraction 

Without type operations, callee cannot branch on (i.e., “tell”) how its  

type arguments were instantiated 
 

• That is why foo<int> [1;2;3] and  

 foo<int*int> [(1,4);(2,5);(3,6)]  

 must return the same value 

• And why any function of type  

  ’a ’b. (’a*’b)->(’b*’a) 

 swaps its arguments or raises an exception or diverges or… 

– Its behavior does not depend on the argument 
 

• This is “parametricity” a.k.a. “theorems for free” 

– Type variables enforce strong abstractions 
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Fancier stuff 

• As defined, our pseudocode (but not OCaml) allows: 

– First-class polymorphism 

– Polymorphic recursion 

 

• First-class polymorphism: can pass around/return functions that 

take type variables 

– Example using currying: 

let prependAll<’a>(x:’a)<’b>(lst:’b list) = 

  map <’a> <’b> (fun y -> (x,y)) lst 
 

(* ’b. ’b list -> (int * ’b) list *) 

let addZeros = prependAll <int> 0 
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Fancier stuff 

• Polymorphic recursion: A polymorphic function can call itself 

using a different instantiation 
 

• Silly example: 
 

  let f <’a> (g:’a->bool) (x:’a) (i:int)= 

     if g x 

     then f<int> (fun x -> x % 2 = 0) i i 

     else f<int*int> (fun p -> true) (3,4) 2 
 

• Useful (??) example… 

 

 



Lecture 7 CSE P505 Autumn 2016  Dan Grossman 34 

Polymorphic recursion 

let rec funnyCount <’a> <’b>  

 (f:’a->bool) (g:’b->bool)  

 (lst1:’a list) (lst2:’b->list) = 

  match lst1 with 

    [] -> 0 (* weird, lst2 might not be empty *) 

  | hd::tl -> (if (f hd) then 1 else 0)  

              + funnyCount <’b> <’a> g f lst2 tl 

 

let useFunny =  

  funnyCount <int> <bool> (fun x -> x=4) not  

     [2;4;4] [true;false] 
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Onto abstract types 

That’s enough about universal types for now 

– Inference and combining with subtyping later 

 

Now what about the other part of our example 

– A signature shows a module defines a type (or type 

constructor) but not its implementation 

– A slightly simpler example: 

type intSet 

val single   : int -> intSet 

val contains : intSet -> int -> bool 

val union    : intSet -> intSet -> intSet 
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Why abstraction 

There are an infinite number of equivalent implementations 

– With different trade-offs, e.g., performance 
 

• Example: fast union but no duplicate removal 

type intSet = S of int | U of intSet * intSet 

… 

let union s1 s2 = U(s1,s2) 
 

• Example: fast lookup for 42, no other duplicate removal 

 type intSet = bool * (int list) 

 let single i = if i=42 then (true,[])  

                          else (false,[i]) 

 … 

  let union(b1,lst1)(b2,lst2) = (b1||b2, lst1@lst2) 
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The backwards E 

What does our interface “say” to clients of it 
 

type intSet 
val single   : int -> intSet 
val contains : intSet -> bool 
val union    : intSet -> intSet -> intSet 
 

“There exists a type, call it intSet, such that these values have 

these types” 

 

This is not the same thing as, “For all alpha, foo can take an alpha” 

 

To confuse “forall” vs. “there exists” is like confusing “and” vs. “or” 

– not (p1 and p2) == (not p1) or (not p2) 

– not (exists a. (not p)) == forall a. p 
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Versus OOP 

OOP types also have a “there exists” aspect to them with this/self 

hiding the implementation via private fields 

– May study OOP later 

– “Binary methods” (e.g., union) don’t quite work out cleanly!  

• Without downcasts or other “cheats” 
 

// still non-imperative (orthogonal issue) 

interface IntSet {  

 boolean contains(int); 

  IntSet union(IntSet); 

} 
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Versus OOP 

interface IntSet {  
  boolean contains(int); 
  IntSet union(IntSet); 
} 
class MyIntSet implements IntSet { 
  private boolean has42 = false; 
  private IntList lst = null; 
  MyIntSet(int x) { … } 
  boolean contains(int x) { … } 
  IntSet union(IntSet that) { /* Good luck! */ } 
} 

Cannot do all of: 

1. Write MyIntSet “how we want” 

2. Have MyIntSet implement IntSet (w/o changing IntSet)  

3. Have union return a MyIntSet 

4. Not insert casts and failures 
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The key difference 

• In OCaml, the implementation of union “knew” the underlying 

representation of its arguments 

 

• On the other hand, if OCaml has two different libraries, they 

have different types, so you can’t choose one at run-time 

 

• It is possible to have first-class abstract types  

– Also known as existential types 

– Show the basic idea in a different domain: closures in C 

– Demonstrates the lower-level implementation of OCaml 

closures is related to “there exists” 
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Closures & Existentials 

• There’s a deep connection between  and how closures are (1) 

used and (2) compiled 

• “Call-backs” are the canonical example: 

 
(* interface *) 

val onKeyEvent : (int->unit)->unit 

(* implementation *) 

let callbacks : (int->unit) list ref = ref [] 
 

let onKeyEvent f = 

  callbacks := f::(!callbacks) 
 

let keyPress i =  

 List.iter (fun f -> f i) !callbacks 
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The connection 

• Key to flexibility:  

– Each registered callback can have “private fields” of different 

types 

– But each callback has type int->unit 

• In C, we don’t have closures or existentials, so we use void* 

(next slide) 

– Clients must downcast their environment 

– Clients must assume library passes back correct 

environment 
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Now in C 

/* interface */ 

typedef  

struct{void* env; void(*f)(void*,int);}* cb_t; 
 

void onKeyEvent(cb_t); 

/* implementation (assuming a list library) */ 

list_t callbacks = NULL; 

void onKeyEvent(cb_t cb){ 

  callbacks=cons(cb, callbacks); 

} 
 

void keyPress(int i) { 

  for(list_t lst=callbacks; lst; lst=lst->tl) 

    lst->hd->f(lst->hd->env, i); 

} 

/* clients: full of casts to/from void* */ 
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The type we want 

• The cb_t type should be an existential: 

 

 

 

 

 

• Client does a “pack” to make the argument for onKeyEvent 

– Must “show” the types match up 

• Library does an “unpack” in the loop 

– Has no choice but to pass each cb_t function pointer its 

own environment 

• This is not a forall 

• (I played around with this stuff to get my Ph.D.  and now see 

Rust and such…) 

/* interface using existentials (not C) */ 

typedef  

struct{α. α env; void(*f)(α, int);}* cb_t; 
 

void onKeyEvent(cb_t); 
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Our plan 

• Simply-typed Lambda-Calculus 

• Safety = (preservation + progress) 

• Extensions (pairs, datatypes, recursion, etc.) 

• Digression: static vs. dynamic typing 

• Digression: Curry-Howard Isomorphism 

• Subtyping 

• Type Variables:  

– Generics (), Abstract types ()  

• Type inference 
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Where are we 

• Done: understand subtyping 

• Done: understand “universal” types and “existential” types 

 

• Now: Bounded parametric polymorphism 

– Synergistic combination of universal and subtyping 

 

• Then: making universal types easier to use but less powerful 

– Type inference 

– Reconsider first-class polymorphism / polymorphic recursion 

– Polymorphic-reference problem 

 

• Then done (??) with types 
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Why bounded polymorphism 

Could one language have τ1 ≤ τ2 and α. τ ? 

– Sure!  They’re both useful and complementary 

– But how do they interact? 

 

1. When is α. τ1 ≤ β.τ2 ? 

 

2. What about bounds? 

 let dblL1 x = x.l1 <- x.l1*2; x 

– Subtyping: dblL1 : {l1=int} → {l1=int} 

• Can pass subtype, but result type loses a lot 

– Polymorphism: dblL1 : α.α → α 

• Lose nothing, but body doesn’t type-check 
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What bounded polymorphism 

The type we want:  dblL1 : α≤{l1=int}.α→α 
 

Java and C# generics have this (different syntax) 
 

Key ideas: 

• A bounded polymorphic function can use subsumption as 

specified by the constraint 

• Instantiating a bounded polymorphic function must satisfy the 

constraint 
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Subtyping revisited 

When is α≤τ1.τ2 ≤ α≤τ3.τ4 ? 

• Note: already “alpha-converted” to same type variable 

 

Sound answer: 

• Contravariant bounds (τ3≤τ1) 

• Covariant bodies (τ2≤τ4) 

Problem: Makes subtyping undecidable (1992; surprised many) 
 

Common workarounds: 

• Require invaraint bounds (τ3≤τ1 and τ1≤τ3) 

• Some ad hoc approximation 
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Our plan 

• Simply-typed Lambda-Calculus 

• Safety = (preservation + progress) 

• Extensions (pairs, datatypes, recursion, etc.) 

• Digression: static vs. dynamic typing 

• Digression: Curry-Howard Isomorphism 

• Subtyping 

• Type Variables:  

– Generics (), Abstract types ()  

• Type inference 
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The ML type system 

• Called “Algorithm W” or “Hindley-Milner inference” 

• In theory, inference “fills out explicit types” 

– Complete if finds an explicit typing whenever one exists 

• In practice, often merge inference and checking 

 

An algorithm best understood by example… 

– Then we’ll explain the type system for which it actually 

infers types 

– Yes, this is backwards: how does it do it, before defining it 
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Example #1 

let f x = 

  let (y,z) = x in 

  (abs y) + z 
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Example #2 

let rec sum lst = 

 match lst with  

   [] ->  0 

  |hd::tl -> hd + (sum tl) 
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Example #3 

let rec length lst = 

 match lst with  

   [] ->  0 

  |hd::tl -> 1 + (length tl) 
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Example #4 

let compose f g x = f (g x) 
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Example #5 

let rec funnyCount f g lst1 lst2 = 

  match lst1 with 

    [] -> 0 (* weird, lst2 might not be empty *) 

  | hd::tl -> (if (f hd) then 1 else 0)  

              + funnyCount g f lst2 tl 

 

(* does not type-check:  

let useFunny =  

  funnyCount (fun x -> x=4) not  

     [2;4;4] [true;false] *) 
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More generally 

• Infer each let-binding or toplevel binding in order 

– Except for mutual recursion (do all at once) 

• Give each variable and subexpression a fresh “constraint 

variable” 

• Add constraints for each subexpression 

– Very similar to typing rules 

• Circular constraints fail (so x x never typechecks) 

• After inferring let-expression, generalize (unconstrained 

constraint variables become type variables) 

 

Note: Actual implementations much more efficient than “generate 

big pile of constraints then solve” (can unify eagerly) 
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What this infers 

“Natural” limitations of this algorithm: Universal types, but 

1. Only let-bound variables get polymorphic types 

– This is why let is not sugar for fun in OCaml 

2. No first-class polymorphism (all foralls all the way to the left) 

3. No polymorphic recursion 

 

Unnatural limitation imposed for soundness reasons we will see: 

4. “Value restriction”: let x = e1 in e2 gives x a polymorphic 

type only if e1 is a value or a variable 

– Includes e1 being a function 

– OCaml has relaxed this slightly in some cases 
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Why? 

• These restrictions are usually tolerable 

• Polymorphic recursion makes inference undecidable 

– Proven in 1992 

• First-class polymorphism makes inference undecidable 

– Proven in 1995 

• Note: Type inference for OCaml efficient in practice, but not in 

theory: A program of size n and run-time n can have a type of 

size O(2^(2^n)) 

• The value restriction is one way to prevent an unsoundness with 

references 
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Given this… 

Subject to these 4 limitations, inference is perfect: 

 

• It gives every expression the most general type it possibly can 

– Not all type systems even have most-general types 

 

• So every program that can type-check can be inferred 

– That is, explicit type annotations are never necessary 

– Exceptions are related to the “value restriction” 

• Make programmer specify non-polymorphic type 



Lecture 7 CSE P505 Autumn 2016  Dan Grossman 61 

Polymorphic references 

A sound type system cannot accept this program: 

let x = ref [] in  

x := 1::[]; 

match !x with _ -> () | hd::_ -> hd ^ “gotcha” 

But it would assuming this interface: 

type ’a ref 

val ref : ’a -> ’a ref 

val !   : ’a ref -> ’a 

val :=  : ’a ref -> ’a -> unit 
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Solutions 

Must restrict the type system. 

 

Many ways exist 
 

1. “Value restriction”: ref [] cannot have a polymorphic type  

– syntactic look for ref not enough 
 

2. Let ref [] have type (α.α list) ref  

– not useful and not an ML type 
 

3. Tell the type system “mutation is special”  

– not “just another library interface” 
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Going beyond 

What makes a “good extension” to a type system? 

 

• Soundness: Does the system still have its “nice properties”? 

• Conservatism: Does the system still typecheck every program 

it used to? 

• Power: Does the system typecheck “a lot” of new programs? 

• Convenience: Does the system not require “too many” explicit 

annotations? 


