
CSEP505: Programming Languages

Lecture 7: Subtypes, Type Variables

Dan Grossman

Autumn 2016

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 2

STLC in one slide

Expressions: e ::= x | λx. e | e e | c

 Values: v ::= λx. e | c

 Types: τ ::= int | τ→ τ

 Contexts: Γ ::= . | Γ, x : τ

 e1 → e1’ e2 → e2’

––––––––––––– ––––––––––– –––––––––––––––––
e1 e2 → e1’ e2 v e2 → v e2’ (λx.e) v → e{v/x}

 ––––––––––– ––––––––––––

 Γ ├ c : int Γ ├ x : Γ(x)

 Γ,x:τ1 ├ e:τ2 Γ ├ e1:τ1→ τ2 Γ ├ e2:τ1

–––––––––––––––––– ––––––––––––––––––––––––
 Γ ├ (λx.e):τ1→ τ2 Γ ├ e1 e2:τ2

e→e’

Γ ├ e: τ

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 3

Our plan

• Simply-typed Lambda-Calculus

• Safety = (preservation + progress)

• Extensions (pairs, datatypes, recursion, etc.)

• Digression: static vs. dynamic typing

• Digression: Curry-Howard Isomorphism

• Subtyping

• Type Variables:

– Generics (), Abstract types ()

• Type inference

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 4

Polymorphism

• Key source of restrictiveness in our types so far:

 Given a Γ, there is at most one τ such that Γ├ e:τ

• Various forms of polymorphism allow more terms to type-check

– Ad hoc: e1+e2 in SML < C < Java < C++

– Parametric: “generics” ’a -> ’a can also have type

 int->int , (’b->’b)->(’b->’b), etc.

– Subtype: new Vector().add(new C()) is legal pre-

generics Java because new C() can have type Object

because C ≤ Object

• Try to avoid the ambiguous word “polymorphism”

– Prefer “static overloading”, “dynamic dispatch”, “type

abstraction”, “subtyping”

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 5

How to add subtyping

Key idea: A value of subtype should “make sense” (not lead to

stuckness) wherever a value of supertype is expected

– Hence what is a subtype is, “not a matter of opinion”

Capture key idea with just one new typing rule (for Γ├ e:τ)

– Leaving all the action to a new “helper” judgment τ1 ≤ τ2

 Γ├ e:τ1 τ1 ≤ τ2

 ––––––––––––––––––
 Γ├ e:τ2

To see a language with [more] interesting subtyping opportunities

we’ll add records to our typed lambda-calculus…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 6

Records w/o polymorphism

Like pairs, but fields named and any number of them:

Field names: l (distinct from variables)

Exps: e ::= … | {l=e, …, l=e} | e.l

Types: τ ::= … | {l=τ, …, l=τ}

 e → e’ e → e’
–––––––––––––––––––––––––––––– –––––––––
{l1=v1, …, li=vi, lj=e, …, ln=en} e.l → e’.l
→ {l1=v1, …, li=vi, lj=e’, …, ln=en}

–––––––––––––––––––––––––––––
{l1=v1,…,li=vi,…,ln=vn}. li → vi Γ├ e :{l1=τ1,…,ln=τn}
 ––––––––––––––––––––
 Γ├ e. li:τi
 Γ├ e1:τ1 … Γ├ en:τn “labels distinct”
 ––––––––––––––––––––––––––––––––––––
 Γ├ {l1=e1, …, ln=en} : {l1=τ1,…,ln=τn}

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 7

Width

This doesn’t yet type-check but it’s safe:

(* f : {l1=int, l2=int}-> int *)

let f = λx. x.l1 + x.l2 in

(f {l1=3, l2=4})

 + (f {l1=7, l2=8, l3=9})

• f has to have one type, but wider arguments okay

• Suggests a first inference rule for our new τ1 ≤ τ2 judgment:

 ––

 {l1=τ1,…, ln=τn, l=τ} ≤ {l1=τ1,…, ln=τn}

– Allows 1 new field, but can use the rule multiple times

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 8

Transitivity

• To derive .├ {l9=7,l22=4,l0=λx. x.l1 } : {l9=int}

 we could use subsumption twice with our width rule each time

• But it’s more convenient and sensible to be able to derive
{l9=int,l22=int,l0={l1=int}->int} ≤ {l9=int}

• In general, can accomplish this with a transitivity rule for our

subtyping judgment

 τ1 ≤ τ2 τ2 ≤ τ3

 ––––––––––––––––––
 τ1 ≤ τ3

– Now a type-checker can at each point use subsumption at
most once, asking a helper function, “I have a τ1 and need a

τ2; am I cool?”

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 9

Permutation

• Why should field order in the type matter?

– For safety, it doesn’t

• So this permutation rule is sound:

– Again transitivity makes this enough

 ––––––––––––––––––––––––––––––––––

 {l1=τ1, …, li=τi,lj=τj, …, ln=τn}

 ≤ {l1=τ1, …, lj=τj,li=τi, …, ln=τn}

• Note in passing: Efficient algorithms to decide if

 τ1 ≤ τ2 are not always simple or existent

– Not hard with rules shown so far

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 10

Digression: Efficiency

• With our semantics, width and permutation make perfect sense

• But many type systems restrict one or both to make fast

compilation easier

Goals:

1. Compile x.l to memory load at known offset

2. Allow width subtyping

3. Allow permutation subtyping

4. Compile record values without (many) “gaps”

All 4 impossible in general, any 3 is pretty easy

– Metapoint: Type systems often have restrictions motivated

by compilers, not semantics

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 11

Toward depth

Recall we added width to type-check this code:

let f = λx. x.l1 + x.l2 in

 (f {l1=3, l2=4})

 + (f {l1=7, l2=8, l3=9})

But we still can’t type-check this code:

let f = λx. x.l.l1 + x.l.l2 in

 (f {l = {l1=3, l2=4} })

 + (f {l = {l1=7, l2=8, l3=9} })

Want subtyping “deeper” in record types…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 12

Depth

• This rule suffices

 τi ≤ τ

 ––––––––––––––––––––––––––––––

 {l1=τ1,…, li=τi,…,ln=τn}

 ≤ {l1=τ1,…, li=τ,…,ln=τn}

• A height n derivation allows subtyping n levels deep

• But is it sound?

– Yes, but only because fields are immutable!!

– Once again a restriction adds power elsewhere!

– Why is immutability key for this rule? See also: HW4

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 13

Toward function subtyping

• So far allow some record types where others expected

• What about allowing some function types where others

expected

• For example,

 int → {l1=int,l2=int} ≤ int → {l1=int}

• But what’s the general principle?

 ??????

 –––––––––––––––––

 τ1→ τ2 ≤ τ3→ τ4

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 14

Function subtyping

 τ3 ≤ τ1 τ2 ≤ τ4

 ––––––––––––––––– Also want: –––––––

 τ1→ τ2 ≤ τ3→ τ4 τ ≤ τ

• Supertype can impose more restrictions on arguments and

reveal less about results

• Jargon: Contravariant in argument, covariant in result

• Example:

 {l1= int,l2= int}→ {l1= int,l2= int}

 ≤ {l1= int,l2= int,l3= int}→ {l1= int}

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 15

Let me be clear

• Functions are contravariant in their argument and covariant in
their result

• Similarly, in class-based OOP, an overriding method could have
contravariant argument types and covariant result type

– But many languages aren’t so useful

• Covariant argument types are wrong!!!

– Please remember this

– For safety, but see Dart and Typescript and Eiffel

• Can “method missing error” occur at run-time?

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 16

Summary

Γ├ e :τ1 τ1≤τ2 τ1≤τ2 τ2≤τ3 τ3≤τ1 τ2≤τ4

–––––––––––––––– ––––– ––––––––––––– ––––––––––––––
Γ├ e:τ2 τ≤τ τ1 ≤ τ3 τ1→τ2≤τ3→τ4

––

 {l1=τ1,…, ln=τn, l=τ} ≤ {l1=τ1,…, ln=τn}

––––––––––––––––––––––––––––––––––

 {l1=τ1, …, li=τi,lj=τj, …, ln=τn} ≤

 {l1=τ1, …, lj=τj,li=τi, …, ln=τn}

 τi ≤ τ

 ––

 {l1=τ1,…, li=τi,…,ln=τn} ≤ {l1=τ1,…, li=τ,…,ln=τn}

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 17

Where are we

• So far: Added subsumption and subtyping rules

 Γ├ e :τ1 τ1 ≤ τ2

 ––––––––––––––––––
 Γ├ e:τ2

• And… this subtyping has no run-time effect!

– Tempting to go beyond: coercions & downcasts

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 18

Coercions

Some temptations

1. int ≤ float “numeric conversion”

2. int ≤ {l1=int} “autoboxing”

3. τ ≤ string “implicit marshalling / printing”

4. τ1 ≤ τ2 “overload the cast operator”

These all require run-time actions for subsumption

– Called coercions

Keeps programmers from whining about float_of_int and

obj.toString(), but…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 19

Coherence problems

• Now program behavior can depend on:

– “where” subsumption occurs in type-checking

– “how” τ1 ≤ τ2 is derived

• These are called “coherence” problems

Two “how” examples:

• print_string(34) where int ≤ float and τ ≤ string

– Can “fix” by printing ints with trailing .0

• 34==34 where int ≤ {l1=int} and == is bit-equality

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 20

It’s a mess

Languages with “incoherent” subtyping must define

– Where subsumption occurs

– What the derivation order is

Typically complicated, incomplete and/or arbitrary

C++ example (Java interfaces similar, unsure about C#)

 class C2 {};

 class C3 {};

 class C1 : public C2, public C3 {};

 class D {

 public: int f(class C2 x) { return 0; }

 int f(class C3 x) { return 1; }

 };

 int main() { return D().f(C1()); }

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 21

Downcasts

• A separate issue: downcasts

• Easy to explain a checked downcast:

 if_hastype(τ,e1) then x -> e2 else e3

Roughly, “if at run-time e1 has type τ (or a subtype), then bind it to

x and evaluate e2. Else evaluate e3.”

• Just to show the issue is orthogonal to exceptions

• In Java you use instanceof and a cast

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 22

Bad results

Downcasts exist and help avoid limitations of incomplete type

systems, but they have drawbacks:

1. The obvious: They can fail at run-time

2. Types don’t erase: need run-time tags where ML doesn’t

3. Breaks abstractions: without them, you can pass
{l1=1,l2=2} and {l1=1,l2=3} to f : {l1=int}->int

and know you get the same answer!

4. Often a quick workaround when you should use parametric

polymorphism…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 23

Our plan

• Simply-typed Lambda-Calculus

• Safety = (preservation + progress)

• Extensions (pairs, datatypes, recursion, etc.)

• Digression: static vs. dynamic typing

• Digression: Curry-Howard Isomorphism

• Subtyping

• Type Variables:

– Generics (), Abstract types ()

• Type inference

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 24

The goal

Understand this interface and why it matters:

type ’a mylist

val empty_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist ->((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

From two perspectives:

1. Library: Implement code to this specification

2. Client: Use code meeting this specification

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 25

What the client likes

1. Library is reusable

• Different lists with elements of different types

• New reusable functions outside library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping

• No downcast to write, run, maybe-fail

3. Library behaves the same for all type instantiations!
– e.g.: length (cons 3 empty_list)
 length (cons 4 empty_list)
 length (cons (7,9) empty_list)

 must be totally equivalent

– In theory, less (re)-integration testing

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 26

What the library likes

1. Reusability

• For same reasons as clients

2. Abstraction of mylist from clients

• Clients behave the same for all equivalent implementations

– e.g.: can change to an arrayList

• Clients typechecked knowing only there exists a type
constructor mylist

• Clients cannot cast a τ mylist to its hidden

implementation

Allowing programmers to define their own abstractions is an

essential obligation (??) of a PL

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 27

What now?

So to understand the essential ideas of type variables, we could

extend our formal typed lambda calculus with:

• Types like α. β. α→(α→ β)→ β

• Functions that take types as well as values (generics)

• Type constructors (take types to produce types)

• Modules with abstract types

Instead we’ll use pseudocode

• Reminiscent of OCaml

• But this is not code that works in OCaml

• Will then explain why OCaml is actually more restrictive

– (It’s for type inference)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 28

Basics

• Let functions take types as well as values

– Made up syntax

– Still just currying

(*map: ’a. ’b. (’a->’b)->’a list->’b list)*)

let map <’a> <’b> f lst = …

• In body, type variables are in scope just like term variables

– Use for calling other polymorphic functions

let ftf = map <int> <bool> (fun x->x=2) [1;2;3]

let map <’a> <’b> (f:’a->’b) (lst:’a list) =

 match lst with

 [] -> []

 | hd::tl -> (::<’b>) (f hd)

 (map<’a><’b> f tl)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 29

Basics, cont’d

• Instantiating a type variable does substitution

– Just like calling a function with a value does

– So map<int> would be

<’b> fun (f:int->’b) -> fun (lst:int list) ->

 match lst with

 [] -> []

 | hd::tl -> (::<’b>) (f hd)

 (map<int><’b> f tl)

• In types or programs, can consistently rename type variables

– So these are two ways to write the same type

’a. ’b. (’a->’b)->’a list->’b list

’foo. ’bar. (’foo->’bar)->’foo list->’bar list

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 30

What can you do with types?

• The only thing we “do” with types is instantiate generic functions

– And all callees “do” with type arguments is other instantiations

– So these types have no run-time effect

• That is, a pre-pass could erase them all

• That is, an interpreter/compiler can ignore them

• This “erasure” property doesn’t hold if allow run-time type
operations like instanceof or C#-style dynamic dispatch

– Or C++-style overloading

– These break abstraction…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 31

Abstraction

Without type operations, callee cannot branch on (i.e., “tell”) how its

type arguments were instantiated

• That is why foo<int> [1;2;3] and

 foo<int*int> [(1,4);(2,5);(3,6)]

 must return the same value

• And why any function of type

 ’a ’b. (’a*’b)->(’b*’a)

 swaps its arguments or raises an exception or diverges or…

– Its behavior does not depend on the argument

• This is “parametricity” a.k.a. “theorems for free”

– Type variables enforce strong abstractions

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 32

Fancier stuff

• As defined, our pseudocode (but not OCaml) allows:

– First-class polymorphism

– Polymorphic recursion

• First-class polymorphism: can pass around/return functions that

take type variables

– Example using currying:

let prependAll<’a>(x:’a)<’b>(lst:’b list) =

 map <’a> <’b> (fun y -> (x,y)) lst

(* ’b. ’b list -> (int * ’b) list *)

let addZeros = prependAll <int> 0

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 33

Fancier stuff

• Polymorphic recursion: A polymorphic function can call itself

using a different instantiation

• Silly example:

 let f <’a> (g:’a->bool) (x:’a) (i:int)=

 if g x

 then f<int> (fun x -> x % 2 = 0) i i

 else f<int*int> (fun p -> true) (3,4) 2

• Useful (??) example…

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 34

Polymorphic recursion

let rec funnyCount <’a> <’b>

 (f:’a->bool) (g:’b->bool)

 (lst1:’a list) (lst2:’b->list) =

 match lst1 with

 [] -> 0 (* weird, lst2 might not be empty *)

 | hd::tl -> (if (f hd) then 1 else 0)

 + funnyCount <’b> <’a> g f lst2 tl

let useFunny =

 funnyCount <int> <bool> (fun x -> x=4) not

 [2;4;4] [true;false]

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 35

Onto abstract types

That’s enough about universal types for now

– Inference and combining with subtyping later

Now what about the other part of our example

– A signature shows a module defines a type (or type

constructor) but not its implementation

– A slightly simpler example:

type intSet

val single : int -> intSet

val contains : intSet -> int -> bool

val union : intSet -> intSet -> intSet

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 36

Why abstraction

There are an infinite number of equivalent implementations

– With different trade-offs, e.g., performance

• Example: fast union but no duplicate removal

type intSet = S of int | U of intSet * intSet

…

let union s1 s2 = U(s1,s2)

• Example: fast lookup for 42, no other duplicate removal

 type intSet = bool * (int list)

 let single i = if i=42 then (true,[])

 else (false,[i])

 …

 let union(b1,lst1)(b2,lst2) = (b1||b2, lst1@lst2)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 37

The backwards E

What does our interface “say” to clients of it

type intSet
val single : int -> intSet
val contains : intSet -> bool
val union : intSet -> intSet -> intSet

“There exists a type, call it intSet, such that these values have

these types”

This is not the same thing as, “For all alpha, foo can take an alpha”

To confuse “forall” vs. “there exists” is like confusing “and” vs. “or”

– not (p1 and p2) == (not p1) or (not p2)

– not (exists a. (not p)) == forall a. p

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 38

Versus OOP

OOP types also have a “there exists” aspect to them with this/self

hiding the implementation via private fields

– May study OOP later

– “Binary methods” (e.g., union) don’t quite work out cleanly!

• Without downcasts or other “cheats”

// still non-imperative (orthogonal issue)

interface IntSet {

 boolean contains(int);

 IntSet union(IntSet);

}

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 39

Versus OOP

interface IntSet {
 boolean contains(int);
 IntSet union(IntSet);
}
class MyIntSet implements IntSet {
 private boolean has42 = false;
 private IntList lst = null;
 MyIntSet(int x) { … }
 boolean contains(int x) { … }
 IntSet union(IntSet that) { /* Good luck! */ }
}

Cannot do all of:

1. Write MyIntSet “how we want”

2. Have MyIntSet implement IntSet (w/o changing IntSet)

3. Have union return a MyIntSet

4. Not insert casts and failures

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 40

The key difference

• In OCaml, the implementation of union “knew” the underlying

representation of its arguments

• On the other hand, if OCaml has two different libraries, they

have different types, so you can’t choose one at run-time

• It is possible to have first-class abstract types

– Also known as existential types

– Show the basic idea in a different domain: closures in C

– Demonstrates the lower-level implementation of OCaml

closures is related to “there exists”

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 41

Closures & Existentials

• There’s a deep connection between and how closures are (1)

used and (2) compiled

• “Call-backs” are the canonical example:

(* interface *)

val onKeyEvent : (int->unit)->unit

(* implementation *)

let callbacks : (int->unit) list ref = ref []

let onKeyEvent f =

 callbacks := f::(!callbacks)

let keyPress i =

 List.iter (fun f -> f i) !callbacks

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 42

The connection

• Key to flexibility:

– Each registered callback can have “private fields” of different

types

– But each callback has type int->unit

• In C, we don’t have closures or existentials, so we use void*

(next slide)

– Clients must downcast their environment

– Clients must assume library passes back correct

environment

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 43

Now in C

/* interface */

typedef

struct{void* env; void(*f)(void*,int);}* cb_t;

void onKeyEvent(cb_t);

/* implementation (assuming a list library) */

list_t callbacks = NULL;

void onKeyEvent(cb_t cb){

 callbacks=cons(cb, callbacks);

}

void keyPress(int i) {

 for(list_t lst=callbacks; lst; lst=lst->tl)

 lst->hd->f(lst->hd->env, i);

}

/* clients: full of casts to/from void* */

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 44

The type we want

• The cb_t type should be an existential:

• Client does a “pack” to make the argument for onKeyEvent

– Must “show” the types match up

• Library does an “unpack” in the loop

– Has no choice but to pass each cb_t function pointer its

own environment

• This is not a forall

• (I played around with this stuff to get my Ph.D. and now see

Rust and such…)

/* interface using existentials (not C) */

typedef

struct{α. α env; void(*f)(α, int);}* cb_t;

void onKeyEvent(cb_t);

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 45

Our plan

• Simply-typed Lambda-Calculus

• Safety = (preservation + progress)

• Extensions (pairs, datatypes, recursion, etc.)

• Digression: static vs. dynamic typing

• Digression: Curry-Howard Isomorphism

• Subtyping

• Type Variables:

– Generics (), Abstract types ()

• Type inference

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 46

Where are we

• Done: understand subtyping

• Done: understand “universal” types and “existential” types

• Now: Bounded parametric polymorphism

– Synergistic combination of universal and subtyping

• Then: making universal types easier to use but less powerful

– Type inference

– Reconsider first-class polymorphism / polymorphic recursion

– Polymorphic-reference problem

• Then done (??) with types

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 47

Why bounded polymorphism

Could one language have τ1 ≤ τ2 and α. τ ?

– Sure! They’re both useful and complementary

– But how do they interact?

1. When is α. τ1 ≤ β.τ2 ?

2. What about bounds?

 let dblL1 x = x.l1 <- x.l1*2; x

– Subtyping: dblL1 : {l1=int} → {l1=int}

• Can pass subtype, but result type loses a lot

– Polymorphism: dblL1 : α.α → α

• Lose nothing, but body doesn’t type-check

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 48

What bounded polymorphism

The type we want: dblL1 : α≤{l1=int}.α→α

Java and C# generics have this (different syntax)

Key ideas:

• A bounded polymorphic function can use subsumption as

specified by the constraint

• Instantiating a bounded polymorphic function must satisfy the

constraint

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 49

Subtyping revisited

When is α≤τ1.τ2 ≤ α≤τ3.τ4 ?

• Note: already “alpha-converted” to same type variable

Sound answer:

• Contravariant bounds (τ3≤τ1)

• Covariant bodies (τ2≤τ4)

Problem: Makes subtyping undecidable (1992; surprised many)

Common workarounds:

• Require invaraint bounds (τ3≤τ1 and τ1≤τ3)

• Some ad hoc approximation

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 50

Our plan

• Simply-typed Lambda-Calculus

• Safety = (preservation + progress)

• Extensions (pairs, datatypes, recursion, etc.)

• Digression: static vs. dynamic typing

• Digression: Curry-Howard Isomorphism

• Subtyping

• Type Variables:

– Generics (), Abstract types ()

• Type inference

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 51

The ML type system

• Called “Algorithm W” or “Hindley-Milner inference”

• In theory, inference “fills out explicit types”

– Complete if finds an explicit typing whenever one exists

• In practice, often merge inference and checking

An algorithm best understood by example…

– Then we’ll explain the type system for which it actually

infers types

– Yes, this is backwards: how does it do it, before defining it

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 52

Example #1

let f x =

 let (y,z) = x in

 (abs y) + z

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 53

Example #2

let rec sum lst =

 match lst with

 [] -> 0

 |hd::tl -> hd + (sum tl)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 54

Example #3

let rec length lst =

 match lst with

 [] -> 0

 |hd::tl -> 1 + (length tl)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 55

Example #4

let compose f g x = f (g x)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 56

Example #5

let rec funnyCount f g lst1 lst2 =

 match lst1 with

 [] -> 0 (* weird, lst2 might not be empty *)

 | hd::tl -> (if (f hd) then 1 else 0)

 + funnyCount g f lst2 tl

(* does not type-check:

let useFunny =

 funnyCount (fun x -> x=4) not

 [2;4;4] [true;false] *)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 57

More generally

• Infer each let-binding or toplevel binding in order

– Except for mutual recursion (do all at once)

• Give each variable and subexpression a fresh “constraint

variable”

• Add constraints for each subexpression

– Very similar to typing rules

• Circular constraints fail (so x x never typechecks)

• After inferring let-expression, generalize (unconstrained

constraint variables become type variables)

Note: Actual implementations much more efficient than “generate

big pile of constraints then solve” (can unify eagerly)

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 58

What this infers

“Natural” limitations of this algorithm: Universal types, but

1. Only let-bound variables get polymorphic types

– This is why let is not sugar for fun in OCaml

2. No first-class polymorphism (all foralls all the way to the left)

3. No polymorphic recursion

Unnatural limitation imposed for soundness reasons we will see:

4. “Value restriction”: let x = e1 in e2 gives x a polymorphic

type only if e1 is a value or a variable

– Includes e1 being a function

– OCaml has relaxed this slightly in some cases

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 59

Why?

• These restrictions are usually tolerable

• Polymorphic recursion makes inference undecidable

– Proven in 1992

• First-class polymorphism makes inference undecidable

– Proven in 1995

• Note: Type inference for OCaml efficient in practice, but not in

theory: A program of size n and run-time n can have a type of

size O(2^(2^n))

• The value restriction is one way to prevent an unsoundness with

references

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 60

Given this…

Subject to these 4 limitations, inference is perfect:

• It gives every expression the most general type it possibly can

– Not all type systems even have most-general types

• So every program that can type-check can be inferred

– That is, explicit type annotations are never necessary

– Exceptions are related to the “value restriction”

• Make programmer specify non-polymorphic type

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 61

Polymorphic references

A sound type system cannot accept this program:

let x = ref [] in

x := 1::[];

match !x with _ -> () | hd::_ -> hd ^ “gotcha”

But it would assuming this interface:

type ’a ref

val ref : ’a -> ’a ref

val ! : ’a ref -> ’a

val := : ’a ref -> ’a -> unit

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 62

Solutions

Must restrict the type system.

Many ways exist

1. “Value restriction”: ref [] cannot have a polymorphic type

– syntactic look for ref not enough

2. Let ref [] have type (α.α list) ref

– not useful and not an ML type

3. Tell the type system “mutation is special”

– not “just another library interface”

Lecture 7 CSE P505 Autumn 2016 Dan Grossman 63

Going beyond

What makes a “good extension” to a type system?

• Soundness: Does the system still have its “nice properties”?

• Conservatism: Does the system still typecheck every program

it used to?

• Power: Does the system typecheck “a lot” of new programs?

• Convenience: Does the system not require “too many” explicit

annotations?

